Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers

[1]  Jürgen Eichenauer-Herrmann,et al.  Inversive congruential pseudorandom numbers : a tutorial , 1992 .

[2]  B. R. McDonald Finite Rings With Identity , 1974 .

[3]  H. Niederreiter Nonlinear Methods for Pseudorandom Number and Vector Generation , 1992 .

[4]  Vladimir Anashin,et al.  MIXED IDENTITIES AND MIXED VARIETIES OF GROUPS , 1987 .

[5]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[6]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[7]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[8]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[9]  B. Schreiber,et al.  Transitive affine transformations on groups. , 1975 .

[10]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[11]  H. Neumann Varieties of Groups , 1967 .

[12]  Douglas Quadling,et al.  Mathematics: The Loss of Certainty , 1981 .

[13]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[14]  H. K. Kaiser,et al.  Permutation polynomials in several variables over residue class rings , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[15]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.

[16]  H. Lausch Zur Theorie der Polynompermutationen über endlichen Gruppen , 1968 .

[17]  H. Lausch,et al.  Algebra of Polynomials , 1974 .

[18]  J. Wrench Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .

[19]  R. R. Hall On pseudo-polynomials , 1971 .

[20]  Vladimir Anashin Solvable groups with operators and commutative rings having transitive polynomials , 1982 .