Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers
暂无分享,去创建一个
[1] Jürgen Eichenauer-Herrmann,et al. Inversive congruential pseudorandom numbers : a tutorial , 1992 .
[2] B. R. McDonald. Finite Rings With Identity , 1974 .
[3] H. Niederreiter. Nonlinear Methods for Pseudorandom Number and Vector Generation , 1992 .
[4] Vladimir Anashin,et al. MIXED IDENTITIES AND MIXED VARIETIES OF GROUPS , 1987 .
[5] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[6] N. Koblitz. p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .
[7] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[8] V. S. Anachin. Uniformly distributed sequences ofp-adic integers , 1994 .
[9] B. Schreiber,et al. Transitive affine transformations on groups. , 1975 .
[10] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[11] H. Neumann. Varieties of Groups , 1967 .
[12] Douglas Quadling,et al. Mathematics: The Loss of Certainty , 1981 .
[13] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[14] H. K. Kaiser,et al. Permutation polynomials in several variables over residue class rings , 1987, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[15] E. Brickell,et al. Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.
[16] H. Lausch. Zur Theorie der Polynompermutationen über endlichen Gruppen , 1968 .
[17] H. Lausch,et al. Algebra of Polynomials , 1974 .
[18] J. Wrench. Table errata: The art of computer programming, Vol. 2: Seminumerical algorithms (Addison-Wesley, Reading, Mass., 1969) by Donald E. Knuth , 1970 .
[19] R. R. Hall. On pseudo-polynomials , 1971 .
[20] Vladimir Anashin. Solvable groups with operators and commutative rings having transitive polynomials , 1982 .