An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes
暂无分享,去创建一个
[1] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[2] J. Bogdanoff,et al. On the Theory of Dislocations , 1950 .
[3] P. Lax,et al. Systems of conservation laws , 1960 .
[4] William D. Schulz. Tensor Artificial Viscosity for Numerical Hydrodynamics , 1964 .
[5] J. Lubliner. On the thermodynamic foundations of non-linear solid mechanics , 1972 .
[6] P. G. Ciarlet,et al. Numerical analysis of the finite element method , 1976 .
[7] Mark L. Wilkins,et al. Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .
[8] D. Steinberg,et al. A constitutive model for metals applicable at high-strain rate , 1980 .
[9] P. Woodward,et al. The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .
[10] T. Belytschko,et al. Computational Methods for Transient Analysis , 1985 .
[11] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[12] J. W. Swegle,et al. Shock viscosity and the prediction of shock wave rise times , 1985 .
[13] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[14] Anomalous physical effects from artificial numerical length scales , 1995 .
[15] Michael Ortiz,et al. Error estimation and adaptive meshing in strongly nonlinear dynamic problems , 1999 .
[16] Ramon Codina,et al. Shock capturing viscosities for the general fluid mechanics algorithm , 1998 .
[17] M. Ortiz,et al. The variational formulation of viscoplastic constitutive updates , 1999 .
[18] Timothy J. Barth,et al. High-order methods for computational physics , 1999 .
[19] J. Marsden,et al. Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .
[20] Ronald E. Cohen,et al. Thermal equation of state of tantalum , 2001 .