Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin.

1. Microelectrode recordings from 15 slowly adapting (SA) cutaneous mechanoreceptor afferents originating in hairy skin were obtained from the radial nerve in humans. 2. Controlled skin stretch was applied to the back of the hand that encompassed the physiological range of skin stretch during movements at the metacarpophalangeal (MCP) joints. 3. Both SA Group I and II afferents showed exquisite dynamic and static sensitivity to skin stretch. The median static strain sensitivity was 1.0 imp.s-1 per percent skin stretch for SAI units and 1.8 for SAII units. 4. Translated into sensitivity to movements at the MCP joint, both SAI and SAII afferents in the skin of the back of the hand displayed a positional sensitivity that was comparable with that reported for muscle spindle afferents. 5. These data give quantitative support to suggestions that skin receptors in the human hairy skin provide information on nearby joint configurations and therefore may play a specific role in proprioception, kinesthesia, and motor control.