A representation of representation applied to a discussion of variable binding

States or state sequences in neural network models are made to represent concepts from applications. This paper motivates, introduces and discusses a formalism for denoting such representations; a representation for representations. The formalism is illustrated by using it to discuss the representation of variable binding and inference abstractly, and then to present four specific representations. One of these is an apparently novel hybrid of phasic and tensor-product representations which retains the desirable properties of each.