Spectra of a class of quadratic functions: Average behaviour and counting functions

The Walsh transform Q̂$\widehat {Q}$ of a quadratic function Q:Fpn→Fp$Q:\mathbb {F}_{p^{n}}\rightarrow \mathbb {F}_{p}$ satisfies |Q̂|∈{0,pn+s2}$|\widehat {Q}| \in \{0,p^{\frac {n+s}{2}}\}$ for an integer 0 ≤ s ≤ n−1. We study quadratic functions given in trace form Q(x)=Trn(∑i=0kaixpi+1)$Q(x) = {{\text {Tr}_{\mathrm {n}}}}({\sum }_{i=0}^{k}a_{i}x^{p^{i}+1})$ with the restriction that ai∈Fp,0≤i≤k$a_{i} \in \mathbb {F}_{p},~ 0\leq i\leq k$. We determine the expected value for the parameter s for such quadratic functions from Fpn$\mathbb {F}_{p^{n}}$ to Fp$\mathbb {F}_{p}$, for many classes of integers n. Our exact formulas confirm that on average the value of s is small, and hence the average nonlinearity of this class of quadratic functions is high when p = 2. We heavily use methods, recently developed by Meidl, Topuzoğlu and Meidl, Roy, Topuzoğlu in order to construct/enumerate such functions with prescribed s. In the first part of this paper we describe these methods in detail and summarize the counting results.

[1]  Claude Carlet Partially-bent functions , 1993, Des. Codes Cryptogr..

[2]  Ferruh Özbudak,et al.  Quadratic forms of codimension 2 over certain finite fields of even characteristic , 2011, Cryptography and Communications.

[3]  Robert W. Fitzgerald,et al.  Highly degenerate quadratic forms over finite fields of characteristic 2 , 2005, Finite Fields Their Appl..

[4]  Pascale Charpin,et al.  On bent and semi-bent quadratic Boolean functions , 2005, IEEE Transactions on Information Theory.

[5]  Wilfried Meidl,et al.  A construction of weakly and non-weakly regular bent functions , 2010, J. Comb. Theory, Ser. A.

[6]  Elwyn R. Berlekamp The Weight Enumerators for Certain Subcodes of the Second Order Binary Reed-Muller Codes , 1970, Inf. Control..

[7]  Wilfried Meidl,et al.  Quadratic functions with prescribed spectra , 2013, Des. Codes Cryptogr..

[8]  Kaisa Nyberg,et al.  Perfect Nonlinear S-Boxes , 1991, EUROCRYPT.

[9]  Guang Gong,et al.  Constructions of quadratic bent functions in polynomial forms , 2006, IEEE Transactions on Information Theory.

[10]  Harald Niederreiter,et al.  Finite fields: Author Index , 1996 .

[11]  Ferruh Özbudak,et al.  Quadratic forms of codimension 2 over finite fields containing F2 and Artin-Schreier type curves , 2012, Finite Fields Their Appl..

[12]  Tor Helleseth,et al.  Monomial and quadratic bent functions over the finite fields of odd characteristic , 2006, IEEE Transactions on Information Theory.

[13]  Wilfried Meidl,et al.  Enumeration of Quadratic Functions With Prescribed Walsh Spectrum , 2014, IEEE Transactions on Information Theory.

[14]  Tor Helleseth,et al.  On P-Ary Bent Functions Defined on Finite Fields , 2003 .

[15]  C. Ding,et al.  Stream Ciphers and Number Theory , 1998 .

[16]  Rudolf Lide,et al.  Finite fields , 1983 .

[17]  Dengguo Feng,et al.  On Quadratic Bent Functions in Polynomial Forms , 2007, IEEE Transactions on Information Theory.

[18]  Richard A. Games,et al.  A fast algorithm for determining the complexity of a binary sequence with period 2n , 1983, IEEE Trans. Inf. Theory.

[19]  On the second-order Reed-Muller code , 2003 .

[20]  Wilfried Meidl,et al.  Bent Functions of Maximal Degree , 2012, IEEE Transactions on Information Theory.

[21]  Wilfried Meidl,et al.  A construction of bent functions from plateaued functions , 2013, Des. Codes Cryptogr..

[22]  Harald Niederreiter,et al.  Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences , 2009, Finite Fields Their Appl..

[23]  Sergio Verdú,et al.  Schemes for Bidirectional Modeling of Discrete Stationary Sources , 2006, IEEE Transactions on Information Theory.

[24]  Harald Niederreiter,et al.  On the expected value of the linear complexity and the k-error linear complexity ofperiodic sequences , 2002, IEEE Trans. Inf. Theory.

[25]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[26]  Harald Niederreiter,et al.  Joint linear complexity of multisequences consisting of linear recurring sequences , 2009, Cryptography and Communications.

[27]  Wilfried Meidl,et al.  Partially bent functions and their properties , 2014, Applied Algebra and Number Theory.

[28]  Wilfried Meidl,et al.  Quadratic functions and maximal Artin-Schreier curves , 2014, Finite Fields Their Appl..

[29]  Robert W. Fitzgerald,et al.  Trace forms over finite fields of characteristic 2 with prescribed invariants , 2009, Finite Fields Their Appl..

[30]  Guang Gong,et al.  A New Characterization of Semi-bent and Bent Functions on Finite Fields* , 2006, Des. Codes Cryptogr..

[31]  Wenfen Liu,et al.  A secondary construction and a transformation on rotation symmetric functions, and their action on bent and semi-bent functions , 2014, J. Comb. Theory, Ser. A.