On the estimation of the distribution of sample means based on non-stationary spatial data

Two different methods of estimating the distribution of sample means based on non-stationary spatially indexed data {Xi : i E I}, where I is a finite subset of the integer lattice 71}, are presented. The information in the different cells in the lattice are allowed to come from different distributions, but with the same expected value or with expected values that can be decomposed additively into directional components. Furthermore, neighboring lattice cells are assumed to be dependent, and the dependence structure is allowed to differ over the lattice. It will be shown under such rather general conditions that the distribution of the sample mean can be estimated by resampling, as well as by a normal approximation for which a non-parametric estimator of variance is provided. The developed methods can be applied in assessing accuracy of statistical inference for spatial data. Key words: resampling, m-dependent random variables, estimating distributions, spatial data on integer lattices.

[1]  Joseph P. Romano,et al.  Nonparametric Resampling for Homogeneous Strong Mixing Random Fields , 1993 .

[2]  V. V. Petrov Limit Theorems of Probability Theory: Sequences of Independent Random Variables , 1995 .

[3]  Per Nilsson,et al.  Skogsskötseln vid 90-talets mitt - läge och trender , 1999 .

[4]  Heather Reese,et al.  Using Landsat TM and NFI data to estimate wood volume, tree biomass and stand age in Dalarna , 1999 .

[5]  Anders Lundström,et al.  Certifieringens konsekvenser för möjliga framtida uttag av industri och energived , 1997 .

[6]  Peter Hall,et al.  On Confidence Intervals for Spatial Parameters Estimated from Nonreplicated Data , 1988 .

[7]  Peter Hall Resampling a coverage pattern , 1985 .

[8]  Textur i flygbilder för skattning av beståndsegenskaper , 1997 .

[9]  Hans Petersson,et al.  Biomassafunktioner för trädfaktorer av tall, gran och björk i Sverige , 1999 .

[10]  Heather Reese,et al.  Wood volume estimations for Alvsbyn Kommun using SPOT satellite data and NFI plots , 2000 .

[11]  Yuri K Belyaev,et al.  Bootstrap, Resampling and Mallows Metric , 1995 .

[12]  Jörgen Wallerman,et al.  Plot-level stem volume estimation and tree species discrimination with CASI remote sensing , 1999 .

[13]  Torgny Lind Quantifying the area of edge zones in Swedish forest to assess the impact of nature conservation on timber yields , 1998 .

[14]  Kenneth Nyström Funktioner för att skatta höjdtillväxten i ungskog , 2000 .

[15]  Michiel von Kerkvoorde A sequential approach in mathematical programming to include spatial aspects of biodiversity in long range forest management planning , 1996 .

[16]  Göran Kempe Hjälpmedel för bestämning av slutenhet i plant- och ungskog , 1995 .

[17]  Göran Ståhl,et al.  Om detektering av förändringar av populationer i begränsade områden , 1997 .

[18]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[19]  Ulrika Dahlberg,et al.  Fältinstruktion för och erfarenheter från vegetationsinventering i Abisko, sommaren 1997 , 1998 .

[20]  K. Singh,et al.  On the Asymptotic Accuracy of Efron's Bootstrap , 1981 .

[21]  Zhengyan Lin,et al.  Limit Theory for Mixing Dependent Random Variables , 1997 .

[22]  Torgny Lind Kolinnehåll i skog och mark i Sverige , 2001 .

[23]  Noel A Cressie,et al.  Prediction of spatial cumulative distribution functions using subsampling , 1999 .

[24]  Nils Broman,et al.  Mätfel i provträdsvariabler och dess inverkan på precision och noggrannhet i volymskattningar , 1999 .

[25]  Magnus Ekström NONPARAMETRIC ESTIMATION OF THE VARIANCE OF SAMPLE MEANS BASED ON NONSTATIONARY SPATIAL DATA , 2002 .

[26]  Bo Ohlsson,et al.  People's options on forest land use , 1998 .

[27]  Peter Holmgren,et al.  Skoglig planering på amerikanska västkusten , 1995 .

[28]  Resampling m-Dependent Random Variables with Applications to Forecasting , 2000 .

[29]  ON SAMPLE REUSE METHODS FOR SPATIAL DATA , 1997 .

[30]  M. Sherman Variance Estimation for Statistics Computed from Spatial Lattice Data , 1996 .