基于粗糙集和 SVM 理论的柴油机故障分类预测诊断

文中利用粗糙集和 SVM 理论相结合的方法对柴油机故障进行快速准确分类预测诊断。首先对收集的故障特征数据进行预处理,再运用粗糙集理论进行属性约简得到最优决策属性表,然后使用 SVM 理论中的分类预测规则对最优决策属性表进行诊断分类,得出诊断结果。通过实例分析验证了该诊断方法优于单一的粗糙集诊断和 SVM 诊断。