FloatBoost learning and statistical face detection

A novel learning procedure, called FloatBoost, is proposed for learning a boosted classifier for achieving the minimum error rate. FloatBoost learning uses a backtrack mechanism after each iteration of AdaBoost learning to minimize the error rate directly, rather than minimizing an exponential function of the margin as in the traditional AdaBoost algorithms. A second contribution of the paper is a novel statistical model for learning best weak classifiers using a stagewise approximation of the posterior probability. These novel techniques lead to a classifier which requires fewer weak classifiers than AdaBoost yet achieves lower error rates in both training and testing, as demonstrated by extensive experiments. Applied to face detection, the FloatBoost learning method, together with a proposed detector pyramid architecture, leads to the first real-time multiview face detection system reported.

[1]  J. Kittler,et al.  Feature Set Search Alborithms , 1978 .

[2]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[3]  Franklin C. Crow,et al.  Summed-area tables for texture mapping , 1984, SIGGRAPH.

[4]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[5]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Alex Pentland,et al.  Human Face Recognition and the Face Image Set's Topology , 1994 .

[7]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[8]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[9]  Yann LeCun,et al.  Transformation Invariance in Pattern Recognition-Tangent Distance and Tangent Propagation , 1996, Neural Networks: Tricks of the Trade.

[10]  Shaogang Gong,et al.  An investigation into face pose distributions , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[11]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yoav Freund,et al.  Boosting the margin: A new explanation for the effectiveness of voting methods , 1997, ICML.

[13]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[14]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Federico Girosi,et al.  Training support vector machines: an application to face detection , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Yali Amit,et al.  Joint Induction of Shape Features and Tree Classifiers , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Harry Wechsler,et al.  Face pose discrimination using support vector machines (SVM) , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[19]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[21]  L. Breiman Arcing Classifiers , 1998 .

[22]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[23]  Yann LeCun,et al.  Boxlets: A Fast Convolution Algorithm for Signal Processing and Neural Networks , 1998, NIPS.

[24]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[25]  Narendra Ahuja,et al.  A SNoW-Based Face Detector , 1999, NIPS.

[26]  Michael L. Creech,et al.  FotoFile: a consumer multimedia organization and retrieval system , 1999, CHI '99.

[27]  Shaogang Gong,et al.  Multi-view face detection and pose estimation using a composite support vector machine across the view sphere , 1999, Proceedings International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems. In Conjunction with ICCV'99 (Cat. No.PR00378).

[28]  Pavel Paclík,et al.  Adaptive floating search methods in feature selection , 1999, Pattern Recognit. Lett..

[29]  Bernard Victorri,et al.  Transformation invariance in pattern recognition: Tangent distance and propagation , 2000 .

[30]  Takeo Kanade,et al.  A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[31]  Takeo Kanade,et al.  A statistical approach to 3d object detection applied to faces and cars , 2000 .

[32]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[33]  Toniann Pitassi,et al.  A Gradient-Based Boosting Algorithm for Regression Problems , 2000, NIPS.

[34]  Shaogang Gong,et al.  Support vector regression and classification based multi-view face detection and recognition , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[35]  Raphaël Féraud,et al.  A fast and accurate face detector for indexation of face images , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[36]  Peter L. Bartlett,et al.  Functional Gradient Techniques for Combining Hypotheses , 2000 .

[37]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[38]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[39]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[40]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[41]  Harry Shum,et al.  Statistical Learning of Multi-view Face Detection , 2002, ECCV.

[42]  Harry Shum,et al.  FloatBoost Learning for Classification , 2002, NIPS.

[43]  Rainer Lienhart,et al.  An extended set of Haar-like features for rapid object detection , 2002, Proceedings. International Conference on Image Processing.

[44]  Chengjun Liu,et al.  A Bayesian Discriminating Features Method for Face Detection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Takeo Kanade,et al.  Object Detection Using the Statistics of Parts , 2004, International Journal of Computer Vision.

[46]  Donald Geman,et al.  Coarse-to-Fine Face Detection , 2004, International Journal of Computer Vision.

[47]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[48]  Paul A. Viola,et al.  Boosting Image Retrieval , 2004, International Journal of Computer Vision.