Bifurcation of Limit Cycles from a Four-Dimensional Center in Control Systems

We study the bifurcation of limit cycles from the periodic orbits of a four-dimensional center in a class of piecewise linear differential systems, which appears in a natural way in control theory. Our main result shows that three is an upper bound for the number of limit cycles, up to first-order expansion of the displacement function with respect to the small parameter. Moreover, this upper bound is reached. For proving this result we use the averaging method in a form where the differentiability of the system is not needed.

[1]  Enrique Ponce,et al.  LIMIT CYCLE BIFURCATION FROM CENTER IN SYMMETRIC PIECEWISE-LINEAR SYSTEMS , 1999 .

[2]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[3]  Jaume Llibre,et al.  Global first harmonic bifurcation diagram for odd piecewise linear control systems , 1996 .

[4]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[5]  Enrique Ponce,et al.  On simplifying and classifying piecewise-linear systems , 2002 .

[6]  Maoan Han,et al.  Bifurcations of periodic orbits, subharmonic solutions and invariant Tori of high-dimensional systems , 1999 .

[7]  Jorge Sotomayor,et al.  Phase portraits of planar control systems , 1996 .

[8]  Jaume Llibre,et al.  Averaging methods for finding periodic orbits via Brouwer degree , 2004 .

[9]  Antonio Esteban Teruel Aguilar Clasificación topológica de una familia de campos vectoriales lineales a trozos simétricos en el plano , 2000 .

[10]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  Xiang Zhang,et al.  Existence of piecewise linear differential systems with exactly n limit cycles for all n ∈ N , 2003 .

[12]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[13]  M Han RESONANT BIFURCATIONS OF PERIODIC SOLUTIONS OF HIGHER DIMENSIONAL SYSTEMS , 1998 .

[14]  Jaume Llibre,et al.  Piecewise Linear Feedback Systems with Arbitrary Number of Limit Cycles , 2003, Int. J. Bifurc. Chaos.