Single‐Crystalline Nanobelts Composed of Transition Metal Ditellurides

Following the celebrated discovery of graphene, considerable attention has been directed toward the rich spectrum of properties offered by van der Waals crystals. However, studies have been largely limited to their 2D properties due to lack of 1D structures. Here, the growth of high-yield, single-crystalline 1D nanobelts composed of transition metal ditellurides at low temperatures (T ≤ 500 °C) and in short reaction times (t ≤ 10 min) via the use of tellurium-rich eutectic metal alloys is reported. The synthesized semimetallic 1D products are highly pure, stoichiometric, structurally uniform, and free of defects, resulting in high electrical performances. Furthermore, complete compositional tuning of the ternary ditelluride nanobelts is achieved with suppressed phase separation, applicable to the creation of unprecedented low-dimensional materials/devices. This approach may inspire new growth/fabrication strategies of 1D layered nanostructures, which may offer unique properties that are not available in other materials.

[1]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[2]  B. E. Brown The crystal structures of WTe2 and high‐temperature MoTe2 , 1966 .

[3]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[4]  A. Morpurgo,et al.  Tuning magnetotransport in a compensated semimetal at the atomic scale , 2015, Nature Communications.

[5]  Yung Woo Park,et al.  Large-area synthesis of high-quality monolayer 1T’-WTe2 flakes , 2017, 2d materials.

[6]  E. Reed,et al.  Structural Phase Transitions by Design in Monolayer Alloys. , 2016, ACS nano.

[7]  Eric Pop,et al.  Thermal dissipation and variability in electrical breakdown of carbon nanotube devices , 2010, 1005.4350.

[8]  Yiming Zhu,et al.  Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys. , 2014, Nanoscale.

[9]  Hai-Zhou Lu,et al.  Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2. , 2017, Nano letters.

[10]  Peng Yu,et al.  Large‐Area and High‐Quality 2D Transition Metal Telluride , 2016, Advanced materials.

[11]  S. Koester,et al.  In‐Plane 2H‐1T′ MoTe2 Homojunctions Synthesized by Flux‐Controlled Phase Engineering , 2017, Advanced materials.

[12]  I. F. Chang,et al.  Long wavelength optical phonons in mixed crystals , 1971 .

[13]  J. Tao,et al.  Electromigration characteristics of copper interconnects , 1993, IEEE Electron Device Letters.

[14]  Albert V. Davydov,et al.  Characterization of Few-Layer 1T' MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering. , 2016, ACS nano.

[15]  Jing Tao,et al.  Titanic Magnetoresistance in WTe2 , 2014, 1405.0973.

[16]  Jannik C. Meyer,et al.  Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. , 2011, Nature materials.

[17]  V. Fedorov,et al.  Phase Equilibria in the Cu–Te System , 2003 .

[18]  K. Banerjee,et al.  Intercalation Doped Multilayer-Graphene-Nanoribbons for Next-Generation Interconnects. , 2017, Nano letters.

[19]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[20]  Z. Zeng,et al.  Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes , 2017, Nanotechnology.

[21]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[22]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[23]  Peng Wang,et al.  Tuning the transport behavior of centimeter-scale WTe2 ultrathin films fabricated by pulsed laser deposition , 2017 .

[24]  S. Dou,et al.  Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2 , 2015, 1504.01460.

[25]  J. F. Wu,et al.  Atomic Diffusion Behavior in W/Cu Diffusion Bonding Process , 2015 .

[26]  Y. Shi,et al.  Raman scattering investigation of large positive magnetoresistance material WTe2 , 2015, 1501.06321.

[27]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[28]  Tomohiro Ohta,et al.  Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W) , 1994 .

[29]  Sang Hoon Chae,et al.  Phase-Engineered Synthesis of Centimeter-Scale 1T'- and 2H-Molybdenum Ditelluride Thin Films. , 2015, ACS nano.

[30]  Xinran Wang,et al.  Top–down fabrication of sub-nanometre semiconducting nanoribbons derived from molybdenum disulfide sheets , 2013, Nature Communications.

[31]  E. Reed,et al.  Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers , 2014, Nature Communications.

[32]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[33]  P. Ajayan,et al.  Two-Step Growth of Two-Dimensional WSe2/MoSe2 Heterostructures. , 2015, Nano letters.

[34]  Junwei Liu,et al.  Quantum spin Hall effect in two-dimensional transition metal dichalcogenides , 2014, Science.

[35]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[36]  M. Ishii,et al.  Raman studies of (Ta, Mo)1+xS2(x = 0.05) solid solutions , 1988 .

[37]  Jun Yan,et al.  Activation of New Raman Modes by Inversion Symmetry Breaking in Type II Weyl Semimetal Candidate T'-MoTe2. , 2016, Nano letters.

[38]  S. Kang,et al.  Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. , 2015, ACS nano.

[39]  E. Pop,et al.  Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. , 2012, Nano letters.

[40]  D. Dumcenco,et al.  Raman study of 2H-Mo1−xWxS2 layered mixed crystals , 2010 .

[41]  A. Mar,et al.  Metal-metal vs tellurium-tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4 , 1992 .

[42]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[43]  D. Cahill,et al.  Direct Synthesis of Large‐Scale WTe2 Thin Films with Low Thermal Conductivity , 2017 .

[44]  Andrew M Rappe,et al.  Monolayer Single-Crystal 1T'-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect. , 2016, Nano letters.

[45]  W. Duan,et al.  Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X-M-Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): a computational study. , 2015, Nanoscale.

[46]  High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe2. , 2016, ACS nano.

[47]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[48]  Z. Lee,et al.  Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy , 2016, 1608.03777.

[49]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  R. Machol,et al.  Vapor Pressure of Liquid Tellurium , 1958 .

[51]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[52]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[53]  L. Fu,et al.  Quantum Spin Hall Effect and Topological Field Effect Transistor in Two-Dimensional Transition Metal Dichalcogenides , 2014, 1406.2749.