Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices

π-Conjugated polymers that are electrochemically cycled in ionic liquids have enhanced lifetimes without failure (up to 1 million cycles) and fast cycle switching speeds (100 ms). We report results for electrochemical mechanical actuators, electrochromic windows, and numeric displays made from three types of π-conjugated polymers: polyaniline, polypyrrole, and polythiophene. Experiments were performed under ambient conditions, yet the polymers showed negligible loss in electroactivity. These performance advantages were obtained by using environmentally stable, room-temperature ionic liquids composed of 1-butyl-3-methyl imidazolium cations together with anions such as tetrafluoroborate or hexafluorophosphate.

[1]  Gajanana C. Birur,et al.  Large, Switchable Electrochromism in the Visible Through Far‐Infrared in Conducting Polymer Devices , 2002 .

[2]  Dean M. DeLongchamp,et al.  Layer-by-layer assembly of PEDOT/polyaniline electrochromic devices , 2001 .

[3]  Maria Forsyth,et al.  Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics , 2001 .

[4]  Michael Grätzel,et al.  Materials science: Ultrafast colour displays , 2001, Nature.

[5]  I. Hunter,et al.  Fast contracting polypyrrole actuators , 2000 .

[6]  Michael Freemantle,et al.  EYES ON IONIC LIQUIDS: NATO workshop examines the industrial potential of green chemistry using room-temperature 'designer solvents' , 2000 .

[7]  John R. Reynolds,et al.  High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices , 1998 .

[8]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[9]  D. De Rossi,et al.  Performance and work capacity of a polypyrrole conducting polymer linear actuator , 1997 .

[10]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  T. F. Otero,et al.  Bilayer dimensions and movement in artificial muscles , 1997 .

[12]  Gordon G. Wallace,et al.  Optimisation of a polypyrrole based actuator , 1997 .

[13]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[14]  R. Baughman Conducting polymer artificial muscles , 1996 .

[15]  Geoffrey M. Spinks,et al.  Mechanism of electromechanical actuation in polypyrrole , 1995 .

[16]  B. Scrosati,et al.  The Interfacial Stability of Li with Two New Solvent‐Free Ionic Liquids: 1,2‐Dimethyl‐3‐propylimidazolium Imide and Methide , 1995 .

[17]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[18]  Keiichi Kaneto,et al.  The electrochemical actuator using electrochemically-deposited poly-aniline film , 1995 .

[19]  P. Trulove,et al.  Dual Intercalating Molten Electrolyte Batteries , 1994 .

[20]  F. Beck,et al.  Corrosion of conducting polymers in aqueous media , 1993 .

[21]  Qibing Pei,et al.  Electrochemical applications of the bending beam method ; a novel way to study ion transport in electroactive polymers , 1993 .

[22]  Yongfang Li,et al.  Stability of conducting polymers from the electrochemical point of view , 1993 .

[23]  Jinsong Tang,et al.  Formation and electrochemistry of polyaniline in ambient-temperature molten salts , 1991 .

[24]  Jinsong Tang,et al.  Electrochemistry of polyaniline in ambient-temperature molten salts , 1991 .

[25]  E. Geniés,et al.  Electrochemical behaviour, chronocoulometric and kinetic study of the redox mechanism of polyaniline deposits , 1986 .

[26]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .