Super-Tough Poly(lactic Acid)-Based Thermoplastic Vulcanizate Based on Selective Dispersion and In Situ Compatibilization of Commercial Reinforcing Fillers and Its Application in Three-Dimensional Printing

[1]  Jianfeng Fan,et al.  Toward Robust, Tough, Self-Healable Supramolecular Elastomers for Potential Application in Flexible Substrates. , 2020, ACS applied materials & interfaces.

[2]  Chuanhui Xu,et al.  A novel strategy to construct co-continuous PLA/NBR thermoplastic vulcanizates: Metal-ligand coordination-induced dynamic vulcanization, balanced stiffness-toughness and shape memory effect , 2020 .

[3]  B. Helms,et al.  Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds , 2019, Nature Chemistry.

[4]  F. Anuar,et al.  Effectiveness of cellulosic Agave angustifolia fibres on the performance of compatibilised poly(lactic acid)-natural rubber blends , 2019, Cellulose.

[5]  K. Landfester,et al.  Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. , 2018, Angewandte Chemie.

[6]  Liming Cao,et al.  Design of super-tough co-continuous PLA/NR/SiO2 TPVs with balanced stiffness-toughness based on reinforced rubber and interfacial compatibilization , 2018, Composites Science and Technology.

[7]  P. Fang,et al.  Interfacial compatibility of super‐tough poly(lactic acid)/polyurethane blends investigated by positron annihilation lifetime spectroscopy , 2018 .

[8]  H. Sardón,et al.  Plastics recycling with a difference , 2018, Science.

[9]  T. Zhao,et al.  Relating Chemical Structure to Toughness via Morphology Control in Fully Sustainable Sebacic Acid Cured Epoxidized Soybean Oil Toughened Polylactide Blends , 2018 .

[10]  A. Katbab,et al.  Manipulation of the properties of PLA nanocomposites by controlling the distribution of nanoclay via varying the acrylonitrile content in NBR rubber , 2018 .

[11]  L. Deng,et al.  Supertoughened Polylactide Binary Blend with High Heat Deflection Temperature Achieved by Thermal Annealing above the Glass Transition Temperature , 2018 .

[12]  H. Deka,et al.  State of the art and future prospectives of poly(lactic acid) based blends and composites , 2018 .

[13]  Li-song Dong,et al.  The Effect of Core-Shell Ratio of Acrylic Impact Modifier on Toughening PLA: RESEARCH ARTICLE , 2017 .

[14]  Hong Zhang,et al.  Mechanical properties and phase morphology of super-tough PLA/PBAT/EMA-GMA multicomponent blends , 2017 .

[15]  Yan Li,et al.  Preparation, morphology and superior performances of biobased thermoplastic elastomer by in situ dynamical vulcanization for 3D-printed materials , 2017 .

[16]  Hong Zhang,et al.  Super-tough Poly(lactide) Thermoplastic Vulcanizates Based on Modified Natural Rubber , 2017 .

[17]  P. Saini,et al.  Poly(lactic acid) blends in biomedical applications. , 2016, Advanced drug delivery reviews.

[18]  Zhiyong Wei,et al.  Highly toughened polylactide/epoxidized poly(styrene-b-butadiene-b-styrene) blends with excellent tensile performance , 2016 .

[19]  Dichen Li,et al.  Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites , 2016 .

[20]  Liqun Zhang,et al.  Renewable and Supertoughened Polylactide-Based Composites: Morphology, Interfacial Compatibilization, and Toughening Mechanism , 2016 .

[21]  Yong Yang,et al.  Research progress in the heat resistance, toughening and filling modification of PLA , 2016, Science China Chemistry.

[22]  Yu-Zhong Wang,et al.  Super Toughened and High Heat-Resistant Poly(Lactic Acid) (PLA)-Based Blends by Enhancing Interfacial Bonding and PLA Phase Crystallization , 2015 .

[23]  E. Piorkowska,et al.  Tough and transparent blends of polylactide with block copolymers of ethylene glycol and propylene glycol , 2015 .

[24]  Q. Fu,et al.  Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend , 2014 .

[25]  Long Jiang,et al.  Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber , 2013 .

[26]  A. Nogales,et al.  Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering , 2012 .

[27]  P. Cassagnau,et al.  Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites , 2012 .

[28]  P. Cassagnau,et al.  Structure and properties of polylactide/natural rubber blends , 2011 .

[29]  Juan Han,et al.  Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends , 2011 .

[30]  L. Ye,et al.  Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends , 2011 .

[31]  A. Janorkar,et al.  Poly(lactic acid) modifications , 2010 .

[32]  Chin I Lin,et al.  Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends , 2008 .

[33]  Jöns Hilborn,et al.  Poly(lactic acid) fiber : An overview , 2007 .

[34]  Yutaka Tokiwa,et al.  Biodegradability and biodegradation of poly(lactide) , 2006, Applied Microbiology and Biotechnology.

[35]  Douglas E. Hirt,et al.  Modification of poly(lactic acid) films: Enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process , 2004 .

[36]  Susan Selke,et al.  An overview of polylactides as packaging materials. , 2004, Macromolecular bioscience.

[37]  S. Slavin,et al.  Instrumented izod impact testing , 1993 .

[38]  Souheng Wu Chain structure, phase morphology, and toughness relationships in polymers and blends , 1990 .