Structural and Electrochemical Characterization of Composite Layered-Spinel Electrodes Containing Ni and Mn for Li-Ion Batteries

The structural features of a series of intergrown "layered-spinel" composite materials with initial formulation xLi[Mn 1.5 Ni 0.5 ]O 4 ·(1 -x)(Li 2 MnO 3 ·Li[Mn 0.5 Ni 0.5 ]O 2 ), previously shown to have attractive properties as positive electrodes in lithium batteries, were studied. The existence of a layered and a spinel component in samples with 0 < x < 1 was confirmed by both X-ray diffraction and 6 Li magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. The unit-cell volume of the layered component was shown to decrease as a function of x, while the unit-cell parameter of the cubic spinel phase did not vary significantly. The 6 Li MAS NMR spectra confirmed that the cation distribution in these layered-spinel composite structures is extremely complex; analysis of the data, particularly for intermediate values of x, suggested that Mn 4+ , Mn 3+ , Ni 3+ , and Ni 2+ ions are present, rather than just Mn 4+ and Ni 2+ as implied by the ideal formula xLi[Mn 1.5 Ni 0.5 ]O 4 ·(1-x) (Li 2 MnO 3 ·Li[Mn 0.5 Ni 0.5 ]O 2 ). The structural changes induced by the electrochemical removal and reinsertion of lithium in the composite electrode for x = 0.5 were followed by 6 Li MAS NMR and related to the different signatures in the composition-voltage profiles. The activity of both the layered and the spinel component within a 5-2 V voltage window was confirmed.

[1]  P. Bruce,et al.  Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries. , 2008, Dalton transactions.

[2]  Deming Shu,et al.  A twelve-analyzer detector system for high-resolution powder diffraction. , 2008, Journal of synchrotron radiation.

[3]  Jun Wang,et al.  A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. , 2008, The Review of scientific instruments.

[4]  A. West,et al.  Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4 − δ , 2008 .

[5]  J. Rodríguez-Carvajal,et al.  Microstructural characterisation of battery materials using powder diffraction data: DIFFaX, FAULTS and SH-FullProf approaches , 2007 .

[6]  Christopher S. Johnson,et al.  Anomalous capacity and cycling stability of xLi2MnO3 · (1 − x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C , 2007 .

[7]  G. Amatucci,et al.  Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50 ≥ x ≥ 0.36) spinels , 2007 .

[8]  Christopher S. Johnson,et al.  Lithium-manganese-nickel-oxide electrodes with integrated layered-spinel structures for lithium batteries , 2007 .

[9]  Á. Caballero,et al.  Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer‐Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries , 2006 .

[10]  John T. Vaughey,et al.  Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries☆ , 2006 .

[11]  Yoyo Hinuma,et al.  Effect of High Voltage on the Structure and Electrochemistry of LiNi0.5Mn0.5O2: A Joint Experimental and Theoretical Study , 2006 .

[12]  Glenn G. Amatucci,et al.  Synthesis and Characterization of Nanostructured 4.7 V Li x Mn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries , 2006 .

[13]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[14]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[15]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[16]  Christopher S. Johnson,et al.  Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3 · (1 − x)Li1 + yMn2 − yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries , 2005 .

[17]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[18]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[19]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[20]  G. Ceder,et al.  Electrochemical Activity of Li in the Transition-Metal Sites of O3 Li [ Li ( 1 − 2x ) / 3Mn ( 2 − x ) / 3Ni x ] O 2 , 2004 .

[21]  T. Ohzuku,et al.  Topotactic Two-Phase Reactions of Li [ Ni1 / 2Mn3 / 2 ] O 4 ( P4332 ) in Nonaqueous Lithium Cells , 2004 .

[22]  Miho Fujita,et al.  Electrochemical and Structural Properties of a 4.7 V-Class LiNi0.5Mn1.5 O 4 Positive Electrode Material Prepared with a Self-Reaction Method , 2004 .

[23]  Xiao‐Qing Yang,et al.  6Li MAS NMR and in situ X-ray studies of lithium nickel manganese oxides , 2003 .

[24]  T. Ohzuku,et al.  Lithium insertion material of LiNi 1/2Mn 1/2O 2 for advanced lithium-ion batteries , 2003 .

[25]  P. Bruce,et al.  Mechanism of Electrochemical Activity in Li2MnO3 , 2003 .

[26]  F. Scholz,et al.  Crystallographic evidence for the formation of a continuous series of mixed crystals between NiO and LiNiO2 , 2003 .

[27]  M. Wagemaker,et al.  High-voltage LiMgδNi0.5−δMn1.5O4 spinels for Li-ion batteries , 2002 .

[28]  Xiao‐Qing Yang,et al.  INVESTIGATION OF THE LOCAL STRUCTURE OF THE LINI0.5MN0.5O2 CATHODE MATERIAL DURING ELECTROCHEMICAL CYCLING BY X-RAY ABSORPTION AND NMR SPECTROSCOPY , 2002 .

[29]  Xiao‐Qing Yang,et al.  CRYSTAL STRUCTURE CHANGES OF LIMN0.5NI0.5O2 CATHODE MATERIALS DURING CHARGE AND DISCHARGE STUDIED BY SYNCHROTRON BASED IN SITU XRD , 2002 .

[30]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[31]  Young Joo Lee,et al.  Determining the Lithium Local Environments in the Lithium Manganates LiZn0.5Mn1.5O4 and Li2MnO3 by Analysis of the 6Li MAS NMR Spinning Sideband Manifolds , 2002 .

[32]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[33]  Young Joo Lee,et al.  6Li Magic Angle Spinning NMR Study of the Cathode Material LiNi x Mn2 − x O 4 : The Effect of Ni Doping on the Local Structure during Charging , 2001 .

[34]  Young Joo Lee,et al.  6Li Magic-Angle Spinning (MAS) NMR Study of Electron Correlations, Magnetic Ordering, and Stability of Lithium Manganese(III) Oxides , 2000 .

[35]  S. Gopukumar,et al.  Lithium metal rechargeable cells using Li2MnO3 as the positive electrode , 1999 .

[36]  D. Song The spinel phases LiAlyMn2−yO4 (y=0, 1/12, 1/9, 1/6, 1/3) and Li(Al,M)1/6Mn11/6O4 (M=Cr, Co) as the cathode for rechargeable lithium batteries , 1999 .

[37]  Young Joo Lee,et al.  6Li and 7Li MAS NMR Studies of Lithium Manganate Cathode Materials , 1998 .

[38]  Y. Ein‐Eli,et al.  LiMn2 − x Cu x O 4 Spinels (0.1 ⩽ x ⩽ 0.5): A new Class of 5 V Cathode Materials for Li Batteries I. Electrochemical, Structural, and Spectroscopic Studies , 1998 .

[39]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[40]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[41]  K. Amine,et al.  A New Three‐Volt Spinel Li1 + x Mn1.5Ni0.5 O 4 for Secondary Lithium Batteries , 1996 .

[42]  Dominique Guyomard,et al.  The Li1+xMn2O4/C rocking-chair system: a review , 1993 .

[43]  D. Gryffroy,et al.  CATION DISTRIBUTION, CLUSTER STRUCTURE AND IONIC ORDERING OF THE SPINEL SERIES LINI0.5MN1.5-XTIXO4 AND LINI0.5-YMGYMN1.5O4. , 1992 .

[44]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[45]  D. Gryffroy,et al.  A Neutron Diffraction Study of some Spinel Compounds Containing Octahedral Ni and Mn at a 1:3 Ratio , 1991 .

[46]  J. Goodenough,et al.  Some Ferrimagnetic Properties of the System LixNi1-xO , 1958 .

[47]  J. Goodenough,et al.  Some magnetic and crystallographic properties of the system Li+xNi++1−2xni+++xO , 1958 .