Accelerated thermal property mapping of TRISO advanced nuclear fuel

[1]  Dong Liu,et al.  Measurement of residual stresses in surrogate coated nuclear fuel particles using ring-core focussed ion beam digital image correlation , 2023, Nuclear Materials and Energy.

[2]  R. Thevamaran,et al.  Microstructural heterogeneity of the buffer layer of TRISO nuclear fuel particles , 2022, Journal of Nuclear Materials.

[3]  D. Hurley,et al.  Thermal properties measurement of TRISO particle coatings from room temperature to 900°C using laser-based thermoreflectance methods , 2022, Journal of Nuclear Materials.

[4]  R. Lebensohn,et al.  Anisotropic Temperature-Dependent Elastic Constants and Thermal Conductivities of TRISO Particle Coatings , 2022, Journal of Nuclear Materials.

[5]  Ronggui Yang,et al.  A new spatial-domain thermoreflectance method to measure a broad range of anisotropic in-plane thermal conductivity , 2022, International Journal of Heat and Mass Transfer.

[6]  C. Marianetti,et al.  Thermal Energy Transport in Oxide Nuclear Fuel. , 2021, Chemical reviews.

[7]  Michael P. Marquez,et al.  Non‐Contact Mass Density and Thermal Conductivity Measurements of Organic Thin Films Using Frequency–Domain Thermoreflectance , 2021, Advanced Materials Interfaces.

[8]  John D. Hunn,et al.  Coated particle fuel: Historical perspectives and current progress , 2019, Journal of Nuclear Materials.

[9]  D. Hurley,et al.  Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications , 2018 .

[10]  P. Xiao,et al.  Evaluation of thermal conductivity of the constituent layers in TRISO particles using Raman spectroscopy , 2017 .

[11]  G. M. Stocks,et al.  Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys , 2017 .

[12]  J. Hunn,et al.  SiC layer microstructure in AGR-1 and AGR-2 TRISO fuel particles and the influence of its variation on the effective diffusion of key fission products , 2016 .

[13]  D. Hurley,et al.  Local measurement of thermal conductivity and diffusivity. , 2015, The Review of scientific instruments.

[14]  C. Xing,et al.  Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts , 2015 .

[15]  A. Shakouri,et al.  Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. , 2015, The Review of scientific instruments.

[16]  Philippe Mallet-Ladeira,et al.  A Raman study to obtain crystallite size of carbon materials: A better alternative to the Tuinstra–Koenig law , 2014 .

[17]  Changhu Xing,et al.  Parametric Study of the Frequency-Domain Thermoreflectance Technique , 2012 .

[18]  Jeffrey Phillips,et al.  Fabrication of uranium oxycarbide kernels and compacts for HTR fuel , 2012 .

[19]  L. Snead,et al.  Microencapsulated fuel technology for commercial light water and advanced reactor application , 2012 .

[20]  D. Hurley,et al.  Spatially localized measurement of thermal conductivity using a hybrid photothermal technique , 2012 .

[21]  D. Rochais,et al.  Thermal characterization of high temperature reactor particle layers by photothermal microscopy , 2010 .

[22]  J. Michler,et al.  Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere , 2010 .

[23]  A. Schmidt,et al.  A frequency-domain thermoreflectance method for the characterization of thermal properties. , 2009, The Review of scientific instruments.

[24]  Timothy Abram,et al.  Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance , 2008 .

[25]  E. Lara‐Curzio,et al.  Thermophysical Properties of YSZ and Ni‐YSZ as a Function of Temperature and Porosity , 2008 .

[26]  G. Jellison,et al.  Increase in pyrolytic carbon optical anisotropy and density during processing of coated particle fuel due to heat treatment , 2008 .

[27]  G. Jellison,et al.  Optical anisotropy measurements of TRISO nuclear fuel particle cross-sections: The method , 2008 .

[28]  K. Norinaga,et al.  The effect of cooling rate on hydrogen release from a pyrolytic carbon coating and its resulting morphology , 2006 .

[29]  H. Ohta,et al.  Thermoreflectance technique to measure thermal effusivity distribution with high spatial resolution , 2005 .

[30]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[31]  I. Petrov,et al.  Nanoparticle beam formation and investigation of gold nanostructured films , 2003 .

[32]  D. Fournier,et al.  Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy , 1999 .

[33]  M. Reichling,et al.  Measuring local thermal conductivity in polycrystalline diamond with a high resolution photothermal microscope , 1997 .

[34]  R. McCreery,et al.  Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra , 1990 .

[35]  C. B. Alcock,et al.  Vapour Pressure Equations for the Metallic Elements: 298–2500K , 1984 .

[36]  J. Wit,et al.  The diffusion of platinum and gold in nickel measured by Rutherford backscattering spectrometry , 1983 .

[37]  R. Powell,et al.  The thermal conductivity of nickel , 1965 .

[38]  P. Xiao,et al.  Analysis of the anisotropy, stoichiometry and polytypes in pyrolytic carbon and silicon carbide coatings , 2013 .