A dynamic artificial neural network for tomato yield prediction

[1]  T. Rientjes,et al.  Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation , 2005 .

[2]  Caren Marzban Performance Measures and Uncertainty , 2009 .

[3]  Mohammad Hassan Shojaeefard,et al.  Sensitivity Analysis of the Artificial Neural Network Outputs in Friction Stir Lap Joining of Aluminum to Brass , 2013 .

[4]  Evor L. Hines,et al.  Yield Prediction for Tomato Greenhouse Using EFuNN , 2013 .

[5]  Timothy Masters,et al.  Practical neural network recipes in C , 1993 .

[6]  Ahmed El-Shafie,et al.  Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia , 2011 .

[7]  Rajkumar Thirumalainambi,et al.  Training data requirement for a neural network to predict aerodynamic coefficients , 2003, SPIE Defense + Commercial Sensing.

[8]  Ashok N. Srivastava,et al.  Nonlinear gated experts for time series: discovering regimes and avoiding overfitting , 1995, Int. J. Neural Syst..

[9]  Shenglian Guo,et al.  Comparison of three updating schemes using artificial neural network in flow forecasting , 2004 .

[10]  Akram A. Moustafa,et al.  Performance evaluation of artificial neural networks for spatial data analysis , 2011 .

[11]  B. D. Hill,et al.  Neural network modeling of greenhouse tomato yield, growth and water use from automated crop monitoring data , 2011 .

[12]  F. Anctil,et al.  An experiment on the evolution of an ensemble of neural networks for streamflow forecasting , 2009 .

[13]  Adnan Topuz,et al.  Predicting moisture content of agricultural products using artificial neural networks , 2010, Adv. Eng. Softw..