Buried Charge at the TiO2/SrTiO3 (111) Interface and Its Effect on Photochemical Reactivity.

High-temperature annealing in air is used to produce SrTiO3 (111) surfaces with two types of atomically flat terraces: those that promote photoanodic reactions and those that promote photocathodic reactions. Surface potential measurements show that the photocathodic terraces have a relatively more positive surface potential than the photoanodic terraces. After depositing thin TiO2 films on the surface, from 1 to 13 nm thick, the surface of the film above the photocathodic terraces also has photocathodic properties, similar to those of the bare surface. While a more positive surface potential can be detected on the surface of the thinnest TiO2 films (1 nm thick), it is undetectable for thicker films. The persistence of the localized photocathodic properties on the film surface, even in the absence of a measurable difference in local potential, indicates that the charge associated with specific terraces on the bare SrTiO3 (111) surface remains localized at the TiO2/SrTiO3 interface and that the buried charge influences the motion of photogenerated carriers.

[1]  G. Rohrer,et al.  Multidomain simulations of coated ferroelectrics exhibiting spatially selective photocatalytic activity with high internal quantum efficiencies , 2016 .

[2]  Paul A. Salvador,et al.  Controlling the Relative Areas of Photocathodic and Photoanodic Terraces on the SrTiO3(111) Surface , 2016 .

[3]  G. Rohrer,et al.  Computational Model of Domain-Specific Reactivity on Coated Ferroelectric Photocatalysts , 2016 .

[4]  M. Khan,et al.  Ferroelectric polarization effect on surface chemistry and photo-catalytic activity: A review , 2016 .

[5]  S. Ismail-Beigi,et al.  Ferroelectric-Based Catalysis: Switchable Surface Chemistry , 2015 .

[6]  G. Rohrer,et al.  Polar Domains at the Surface of Centrosymmetric BiVO4 , 2014 .

[7]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[8]  Y. Kanemitsu,et al.  Determination of electron and hole lifetimes of rutile and anatase TiO2 single crystals , 2012 .

[9]  Frank E. Osterloh,et al.  Nanoscale strontium titanate photocatalysts for overall water splitting. , 2012, ACS nano.

[10]  Xiuyan Li,et al.  Effect of polar and non-polar surfaces of ZnO nanostructures on photocatalytic properties , 2012 .

[11]  G. Rohrer,et al.  Heterostructured Ceramic Powders for Photocatalytic Hydrogen Production: Nanostructured TiO2 Shells Surrounding Microcrystalline (Ba,Sr)TiO3 Cores , 2012 .

[12]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[13]  M. Batzill Fundamental aspects of surface engineering of transition metal oxide photocatalysts , 2011 .

[14]  Paul A. Salvador,et al.  Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures , 2011 .

[15]  Jian Pan,et al.  On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. , 2011, Angewandte Chemie.

[16]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Influence of Titania Phase and Orientation , 2010 .

[17]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity , 2010 .

[18]  G. Rohrer,et al.  Orientation and Phase Relationships between Titania Films and Polycrystalline BaTiO3 Substrates as Determined by Electron Backscatter Diffraction Mapping , 2010 .

[19]  Jun Zhang,et al.  Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. , 2010, ACS nano.

[20]  S. Dunn,et al.  Photochemistry on a polarisable semi-conductor: what do we understand today? , 2009, Journal of Materials Science.

[21]  P. Blaha,et al.  The small unit cell reconstructions of SrTiO3(1 1 1) , 2009, 0901.3550.

[22]  L. Marks,et al.  Time, temperature, and oxygen partial pressure-dependent surface reconstructions on SrTiO3(1 1 1): A systematic study of oxygen-rich conditions , 2008 .

[23]  M. R. Castell,et al.  Surface of Sputtered and Annealed Polar SrTiO3(111): TiOx-Rich (n × n) Reconstructions , 2008 .

[24]  S. Senz,et al.  Epitaxial growth of TiO2 thin films on SrTiO3, LaAlO3 and yttria-stabilized zirconia substrates by electron beam evaporation , 2007 .

[25]  A. Taleb,et al.  Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and x-ray absorption spectroscopy , 2007 .

[26]  Junhua Luo,et al.  Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3‐Coated Fe2O3 and BiFeO3 , 2006 .

[27]  M. Inagaki,et al.  Direct Formation of Zirconia‐Doped Titania with Stable Anatase‐Type Structure by Thermal Hydrolysis , 2004 .

[28]  G. Rohrer,et al.  Structure Se nsitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces , 2003 .

[29]  R. French,et al.  Optical properties and electronic structure of oxidized and reduced single-crystal strontium titanate , 2003 .

[30]  Roger H. French,et al.  Bulk electronic structure of SrTiO3: Experiment and theory , 2001 .

[31]  M. Toyoda,et al.  Preparation of stable anatase-type TiO2 and its photocatalytic performance , 2001 .

[32]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[33]  M. Igarashi,et al.  Absorption spectra of anatase TiO2 single crystals heat-treated under oxygen atmosphere , 2000 .

[34]  C. W. Chen,et al.  Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalate , 1999 .

[35]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[36]  A. Heller Chemistry and Applications of Photocatalytic Oxidation of Thin Organic Films , 1996 .

[37]  Tang,et al.  Urbach tail of anatase TiO2. , 1995, Physical review. B, Condensed matter.

[38]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[39]  J. Herrmann,et al.  Photocatalytic Deposition of Silver on Powder Titania: Consequences for the Recovery of Silver. , 1988 .

[40]  G. Somorjai,et al.  UPS and XPS studies of the chemisorption of O2, H2 AND H2O on reduced and stoichiometric SrTiO3(111) surfaces; The effects of illumination , 1980 .

[41]  P. W. Tasker,et al.  The stability of ionic crystal surfaces , 1979 .

[42]  D. Cromer,et al.  The Structures of Anatase and Rutile , 1955 .

[43]  R. G. Breckenridge,et al.  Electrical properties of titanium dioxide semiconductors , 1950 .

[44]  J. Ha,et al.  Effect of Polarity on Photoelectrochemical Properties of Polar and Semipolar GaN Photoanode , 2016 .

[45]  Andrew C. Kummel,et al.  Kelvin probe force microscopy and its application , 2011 .

[46]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[47]  David Emin,et al.  High mobility n‐type charge carriers in large single crystals of anatase (TiO2) , 1994 .

[48]  P. Nagarkar,et al.  Effect of surface treatment on SrTiO3: An x‐ray photoelectron spectroscopic study , 1991 .