Bayesian Inference of Odds Ratios in Misclassified Binary Data with a Validation Substudy

We propose a fully Bayesian model with a non-informative prior for analyzing misclassified binary data with a validation substudy. In addition, we derive a closed-form algorithm for drawing all parameters from the posterior distribution and making statistical inference on odds ratios. Our algorithm draws each parameter from a beta distribution, avoids the specification of initial values, and does not have convergence issues. We apply the algorithm to a data set and compare the results with those obtained by other methods. Finally, the performance of our algorithm is assessed using simulation studies.