Mars Science Laboratory relative humidity observations: Initial results

The Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS-H), and UV measurements. We concentrate on describing the REMS-H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS-H results by comparing them with earlier observations and modeling results. The REMS-H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Key Points Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppm MSL relative humidity observation provides good data Highest detected relative humidity reading during first MSL 100 sols is RH75%

[1]  J. Dubois,et al.  Occultation of stars in the UV: Study of the atmosphere of Mars , 2001 .

[2]  Mark I. Richardson,et al.  PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics , 2007 .

[3]  Richard W. Zurek,et al.  Comparative aspects of the climate of Mars: an introduction to the current atmosphere. , 1992 .

[4]  A. Dollfus,et al.  Telescopic observations - Visual, photographic, polarimetric. [of planet Mars] , 1992 .

[5]  S. Wall Analysis of condensates formed at the Viking 2 lander site - The first winter , 1981 .

[6]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[7]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[8]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian atmosphere: 1. Polar processes , 1990 .

[9]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2006 .

[10]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[11]  Amitabha Ghosh,et al.  One Martian year of atmospheric observations using MER Mini‐TES , 2006 .

[12]  John C. Pearl,et al.  One Martian year of atmospheric observations by the thermal emission spectrometer , 2001 .

[13]  F. Palluconi,et al.  Martian North Pole Summer Temperatures: Dirty Water Ice , 1976, Science.

[14]  Carol R. Stoker,et al.  Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site , 2009 .

[15]  James J. Wray,et al.  Gale crater: the Mars Science Laboratory/Curiosity Rover Landing Site , 2012, International Journal of Astrobiology.

[16]  H. Spinrad,et al.  Letter to the Editor: the Detection of Water Vapor on Mars. , 1963 .

[17]  F. Forget,et al.  The effects of the martian regolith on GCM water cycle simulations , 2005 .

[18]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[19]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[20]  H. Maring,et al.  Journal of Geophysical Research , 1949, Nature.

[21]  P. Palange,et al.  From the authors , 2007, European Respiratory Journal.

[22]  J. Pollack,et al.  Dynamics of the atmosphere of Mars , 1992 .

[23]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[24]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[25]  Near‐tropical subsurface ice on Mars , 2010, 1103.0379.

[26]  N. Cabrol,et al.  On the possibility of liquid water on present‐day Mars , 2001 .

[27]  Stephen R. Lewis,et al.  The Martian climate revisited : atmosphere and environment of a desert planet , 2004 .

[28]  A. Määttänen,et al.  Boundary‐layer simulations for the Mars Phoenix lander site , 2010 .

[29]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[30]  R. Haberle,et al.  Mars Atmospheric Dynamics , 1998 .

[31]  R. Kuzmin,et al.  Mapping of the water ice content within the Martian surficial soil on the periphery of the retreating seasonal northern polar cap based on the TES and the OMEGA data , 2012 .

[32]  P. Christensen,et al.  Thermal conductivity measurements of particulate materials 2. Results , 1997 .

[33]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[34]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian Atmosphere: 2. Seasonal pressure variations , 1993 .

[35]  M. Mellon,et al.  In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site , 2010 .

[36]  H. Savijärvi,et al.  Surface and boundary‐layer modelling for the Mars Exploration Rover sites , 2008 .

[37]  J. Pollack,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 2. Transient baroclinic eddies , 1993 .

[38]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[39]  Thomas E. Wolverton,et al.  Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers , 2003 .

[40]  D. J. Milton Water and processes of degradation in the Martian landscape , 1973 .

[41]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[42]  Ari-Matti Harri,et al.  Mars pathfinder: New data and new model simulations , 2004 .

[43]  M. Trainer,et al.  Enhanced CO2 trapping in water ice via atmospheric deposition with relevance to Mars , 2010 .

[44]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[45]  David A. Paige,et al.  The seasonal cycle of carbon dioxide on Mars , 1992 .

[46]  Jeffrey R. Barnes,et al.  Mars atmospheric dynamics as simulated by the NASA Ames General Circulation Model: 1. The zonal‐mean circulation , 1993 .

[47]  Y. Mintz,et al.  Numerical Simulation of the Atmospheric Circulation and Climate of Mars , 1969 .

[48]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[49]  B. Jakosky The role of seasonal reservoirs in the Mars water cycle: II. Coupled models of the regolith, the polar caps, and atmospheric transport , 1983 .

[50]  H. Savijärvi A model study of the atmospheric boundary layer in the Mars pathfinder lander conditions , 1999 .