Computers and Mathematics with Applications a Conservative Numerical Method for the Cahn–hilliard Equation with Dirichlet Boundary Conditions in Complex Domains

In this paper we present a conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains. The method uses an unconditionally gradient stable nonlinear splitting numerical scheme to remove the high-order time-step stability constraints. The continuous problem has the conservation of mass and we prove the conservative property of the proposed discrete scheme in complex domains. We describe the implementation of the proposed numerical scheme in detail. The resulting system of discrete equations is solved by a nonlinear multigrid method. We demonstrate the accuracy and robustness of the proposed Dirichlet boundary formulation using various numerical experiments. We numerically show the total energy decrease and the unconditionally gradient stability. In particular, the numerical results indicate the potential usefulness of the proposed method for accurately calculating biological membrane dynamics in confined domains.

[1]  Seyyed Mohammad Mousavi,et al.  Numerical investigation of blood flow. Part II: In capillaries , 2009 .

[2]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[3]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[4]  Christian Fabry,et al.  Resonance with respect to the Fucik spectrum , 2000 .

[5]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[6]  Junseok Kim,et al.  A fast, robust, and accurate operator splitting method for phase-field simulations of crystal growth , 2011 .

[7]  Mehdi Dehghan,et al.  A fourth‐order central Runge‐Kutta scheme for hyperbolic conservation laws , 2010 .

[8]  Mehdi Dehghan,et al.  A high-order non-oscillatory central scheme with non-staggered grids for hyperbolic conservation laws , 2011, Comput. Phys. Commun..

[9]  Junseok Kim,et al.  A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE SEGMENTATION , 2010 .

[10]  Mehdi Dehghan,et al.  A meshless method using the radial basis functions for numerical solution of the regularized long wave equation , 2010 .

[11]  Paul C. Fife,et al.  Models for phase separation and their mathematics. , 2000 .

[12]  Xingde Ye,et al.  The Fourier collocation method for the Cahn-Hilliard equation☆ , 2002 .

[13]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[14]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[15]  Mehdi Dehghan,et al.  A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn–Hilliard equation , 2009 .

[16]  Zi-Kui Liu,et al.  Spectral implementation of an adaptive moving mesh method for phase-field equations , 2006, J. Comput. Phys..

[17]  Hang Ding,et al.  Wetting condition in diffuse interface simulations of contact line motion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Junseok Kim,et al.  Accurate contact angle boundary conditions for the Cahn–Hilliard equations , 2011 .

[19]  Jie Shen,et al.  An efficient moving mesh spectral method for the phase-field model of two-phase flows , 2009, J. Comput. Phys..

[20]  Daisuke Furihata,et al.  A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.

[21]  Roberto Mauri,et al.  Diffuse-Interface Modeling of Phase Segregation in Liquid Mixtures , 2008 .

[22]  M ChooS,et al.  Cahn‐Hilliad方程式に関する保存型非線形差分スキーム‐II , 2000 .

[23]  R. Nicolaides,et al.  Numerical analysis of a continuum model of phase transition , 1991 .

[24]  Rakesh K Jain,et al.  Red blood cells augment leukocyte rolling in a virtual blood vessel. , 2002, Biophysical journal.

[25]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[26]  Aleksander S Popel,et al.  Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. , 2005, Journal of biomechanical engineering.

[27]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation in complex domains , 2011, J. Comput. Phys..

[28]  Hong Zhao,et al.  A spectral boundary integral method for flowing blood cells , 2010, J. Comput. Phys..

[29]  Aleksander S Popel,et al.  Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. , 2008, Journal of biomechanics.

[30]  Peter K. Jimack,et al.  A fully implicit, fully adaptive time and space discretisation method for phase-field simulation of binary alloy solidification , 2007, J. Comput. Phys..

[31]  L. Munn,et al.  Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. , 2003, Biophysical journal.

[32]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[34]  Y. Mukaigawa,et al.  Large Deviations Estimates for Some Non-local Equations I. Fast Decaying Kernels and Explicit Bounds , 2022 .

[35]  J. Clausen,et al.  Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method , 2009, Journal of Fluid Mechanics.

[36]  Héctor D. Ceniceros,et al.  A nonstiff, adaptive mesh refinement-based method for the Cahn-Hilliard equation , 2007, J. Comput. Phys..

[37]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[38]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[39]  Nicolas Minc,et al.  Influence of Cell Geometry on Division-Plane Positioning , 2011, Cell.

[40]  Chert,et al.  Applications of semi-implicit Fourier-spectral method to phase field equations , 2004 .

[41]  Junseok Kim,et al.  An Unconditionally Gradient Stable Adaptive Mesh Refinement for the Cahn-Hilliard Equation , 2008 .

[42]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[43]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[44]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[45]  Mehdi Dehghan,et al.  Multigrid solution of high order discretisation for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind , 2006, Appl. Math. Comput..

[46]  J. Lowengrub,et al.  Two-phase flow in complex geometries: A diffuse domain approach. , 2010, Computer modeling in engineering & sciences : CMES.

[47]  Hua Li,et al.  Modeling and simulation of microfluid effects on deformation behavior of a red blood cell in a capillary. , 2010, Microvascular research.

[48]  Danielle Hilhorst,et al.  On the slow dynamics for the Cahn–Hilliard equation in one space dimension , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[49]  Richard Welford,et al.  A multigrid finite element solver for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[50]  Li-ping He,et al.  Error Estimation of a Class of Stable Spectral Approximation to the Cahn-Hilliard Equation , 2009, J. Sci. Comput..

[51]  Robert Nürnberg,et al.  A posteriori estimates for the Cahn-Hilliard equation with obstacle free energy , 2009 .

[53]  Jeffrey W. Bullard,et al.  Computational and mathematical models of microstructural evolution , 1998 .

[54]  Harald Garcke,et al.  A MultiPhase Field Concept: Numerical Simulations of Moving Phase Boundaries and Multiple Junctions , 1999, SIAM J. Appl. Math..

[55]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[56]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..

[57]  L. Munn,et al.  Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis. , 2005, Biophysical journal.

[58]  Prosenjit Bagchi,et al.  Mesoscale simulation of blood flow in small vessels. , 2007, Biophysical journal.

[59]  Junseok Kim Phase-Field Models for Multi-Component Fluid Flows , 2012 .

[60]  Maria Fernandino,et al.  Using Cahn-Hilliard mobility to simulate coalescence dynamics , 2010, Comput. Math. Appl..

[61]  Peter W. Bates,et al.  The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation , 2005 .

[62]  A. Popel,et al.  Large deformation of red blood cell ghosts in a simple shear flow. , 1998, Physics of fluids.

[63]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[64]  Yaling Liu,et al.  Rheology of red blood cell aggregation by computer simulation , 2006, J. Comput. Phys..

[65]  Mehdi Dehghan,et al.  The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves , 2011, Math. Comput. Model..

[66]  Quan-Fang Wang Optimal distributed control of nonlinear Cahn–Hilliard systems with computational realization , 2011 .

[67]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.