Feature-preserving T-mesh construction using skeleton-based polycubes

This paper presents a novel algorithm which uses skeleton-based polycube generation to construct feature-preserving T-meshes. From the skeleton of the input model, we first construct initial cubes in the interior. By projecting corners of interior cubes onto the surface and generating a new layer of boundary cubes, we split the entire interior domain into different cubic regions. With the splitting result, we perform octree subdivision to obtain T-spline control mesh or T-mesh. Surface features are classified into three groups: open curves, closed curves and singularity features. For features without introducing new singularities like open or closed curves, we preserve them by aligning to the parametric lines during subdivision, performing volumetric parameterization from frame field, or modifying the skeleton. For features introducing new singularities, we design templates to handle them. With a valid T-mesh, we calculate rational trivariate T-splines and extract Bezier elements for isogeometric analysis. We present a novel algorithm which uses skeleton-based polycube generation to construct T-meshes.Three kinds of features are preserved: open curves, closed curves, singularity features.With a valid T-mesh, we calculate trivariate T-splines for isogeometric analysis.

[1]  Hujun Bao,et al.  Frame Field Singularity Correctionfor Automatic Hexahedralization , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  Loïc Maréchal,et al.  Advances in Octree-Based All-Hexahedral Mesh Generation: Handling Sharp Features , 2009, IMR.

[3]  Charlie C. L. Wang,et al.  Domain construction for volumetric cross-parameterization , 2014, Comput. Graph..

[4]  Hong Qin,et al.  Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[6]  Hujun Bao,et al.  ℓ1-Based Construction of Polycube Maps from Complex Shapes , 2014, ACM Trans. Graph..

[7]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[8]  Andrea Tagliasacchi,et al.  Mean Curvature Skeletons , 2012, Comput. Graph. Forum.

[9]  Yongjie Zhang,et al.  Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data. , 2006, Computer methods in applied mechanics and engineering.

[10]  Jin Qian,et al.  Automatic unstructured all-hexahedral mesh generation from B-Reps for non-manifold CAD assemblies , 2012, Engineering with Computers.

[11]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[12]  I. Akkerman,et al.  Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..

[13]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[14]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[15]  C. C. Long,et al.  Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..

[16]  M. Sabin,et al.  Hexahedral mesh generation by medial surface subdivision: Part I. Solids with convex edges , 1995 .

[17]  Gershon Elber,et al.  Geometric modeling with splines - an introduction , 2001 .

[18]  Tom Lyche,et al.  Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .

[19]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[20]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[21]  M. Price,et al.  Hexahedral Mesh Generation by Medial Surface Subdivision: Part II. Solids with Flat and Concave Edges , 1997 .

[22]  Alla Sheffer,et al.  PolyCut , 2013, ACM Trans. Graph..

[23]  Kang Zhang,et al.  A topology-preserving optimization algorithm for polycube mapping , 2011, Comput. Graph..

[24]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[26]  Guoliang Xu,et al.  A Robust 2-Refinement Algorithm in Octree and Rhombic Dodecahedral Tree Based All-Hexahedral Mesh Generation , 2012, IMR.

[27]  Deborah Silver,et al.  Curve-Skeleton Properties, Applications, and Algorithms , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[29]  Eugene Zhang,et al.  All‐Hex Mesh Generation via Volumetric PolyCube Deformation , 2011, Comput. Graph. Forum.

[30]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[31]  Konrad Polthier,et al.  CUBECOVER – Parameterization of 3D Volumes , 2011 .

[32]  Kang Zhang,et al.  Optimizing polycube domain construction for hexahedral remeshing , 2014, Comput. Aided Des..

[33]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[34]  Baining Guo,et al.  All-hex meshing using singularity-restricted field , 2012, ACM Trans. Graph..

[35]  Bruno Lévy,et al.  Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.

[36]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[37]  Tong-Yee Lee,et al.  Skeleton extraction by mesh contraction , 2008, SIGGRAPH 2008.

[38]  Elaine Cohen,et al.  Generalized Swept Mid‐structure for Polygonal Models , 2012, Comput. Graph. Forum.

[39]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[40]  Guoliang Xu,et al.  A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation , 2013 .

[41]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[42]  Adarsh Krishnamurthy,et al.  An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation , 2012, Medical Image Anal..

[43]  Zhao Yin,et al.  Feature-aligned harmonic volumetric mapping using MFS , 2010, Comput. Graph..

[44]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[45]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[46]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[47]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..