Controlled multimedia wireless link sharing via enhanced class-based queuing with channel-state-dependent packet scheduling

A key problem in transporting multimedia traffic across wireless networks is a controlled sharing of the wireless link by different packet streams. So far this problem has been treated as that of providing support for quality of service in time division multiplexing based medium access control protocols (MAC). Adopting a different perspective to the problem, this paper describes an approach based on extending the class-based queueing (CBQ) based controlled hierarchical link sharing model proposed for the Internet. Our scheme enhances CBQ, which works well in wired links such as point-to-point wires of fixed bandwidth, to also work well with wireless links based on radio channels that are (i) inherently shared on-demand among multiple radios, and (ii) are subject to highly dynamic bandwidth variations due to spatially and temporally varying fading with accompanying burst errors. The proposed scheme is based on combining a modified version of CBQ with channel-state dependent packet scheduling.