Modeling geostatistical incomplete spatially correlated survival data with applications to COVID-19 mortality in Ghana

[1]  A. Suherman,et al.  COVID-19 Mortality Risk Factors Using Survival Analysis: A Case Study of Jakarta, Indonesia , 2023, IEEE Transactions on Computational Social Systems.

[2]  Benjamin M. Taylor,et al.  Spatial Variation of Survival for Colorectal Cancer in Malaysia , 2021, International journal of environmental research and public health.

[3]  P. Su,et al.  Association of ambient air pollution with cardiovascular disease risks in people with type 2 diabetes: a Bayesian spatial survival analysis , 2020, Environmental Health.

[4]  S. Lipsitz,et al.  A New Bayesian Single Index Model with or without Covariates Missing at Random. , 2020, Bayesian analysis.

[5]  Jer Ping Ooi,et al.  Risk factors for mortality among COVID-19 patients , 2020, Diabetes Research and Clinical Practice.

[6]  T. S. Garces,et al.  Mortality and survival of COVID-19 , 2020, Epidemiology and Infection.

[7]  R. Cumming,et al.  Importance of collecting data on socioeconomic determinants from the early stage of the COVID-19 outbreak onwards , 2020, Journal of Epidemiology & Community Health.

[8]  M. Mohammadzadeh,et al.  Geostatistical survival model with Gaussian random effect , 2020 .

[9]  Earl W. Duncan,et al.  Bayesian Spatial Survival Models for Hospitalisation of Dengue: A Case Study of Wahidin Hospital in Makassar, Indonesia , 2020, International journal of environmental research and public health.

[10]  O. Harel,et al.  Multiple Imputation for Incomplete Data in Environmental Epidemiology Research , 2019, Current Environmental Health Reports.

[11]  B. Sartorius,et al.  Prevalence and risk factors for child labour and violence against children in Egypt using Bayesian geospatial modelling with multiple imputation , 2019, bioRxiv.

[12]  M. Mansournia,et al.  A Spatial Survival Model in Presence of Competing Risks for Iranian Gastrointestinal Cancer Patients , 2018, Asian Pacific journal of cancer prevention : APJCP.

[13]  Bo Li,et al.  Spatially varying auto‐regressive models for prediction of new human immunodeficiency virus diagnoses , 2018, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[14]  Zhongheng Zhang,et al.  Overview of model validation for survival regression model with competing risks using melanoma study data. , 2018, Annals of translational medicine.

[15]  Eric J Tchetgen Tchetgen,et al.  Principled Approaches to Missing Data in Epidemiologic Studies. , 2018, American journal of epidemiology.

[16]  Eric J Tchetgen Tchetgen,et al.  Multiple Imputation for Incomplete Data in Epidemiologic Studies , 2018, American journal of epidemiology.

[17]  D. Westreich,et al.  Managing Missing Data in Patient Registries: Addendum to Registries for Evaluating Patient Outcomes: A User’s Guide, Third Edition [Internet] , 2018 .

[18]  Z. Su,et al.  Managing Missing Data in Patient Registries , 2018 .

[19]  Timothy Hanson,et al.  spBayesSurv: Fitting Bayesian Spatial Survival Models Using R , 2017, Journal of Statistical Software.

[20]  Benjamin M. Taylor,et al.  spatsurv:an R package for Bayesian inference with spatial survival models , 2017 .

[21]  Amran,et al.  Bayesian inference for spatial parametric proportional hazards model using Spatsurv R , 2017 .

[22]  C. Nunes,et al.  Modelling the time to detection of urban tuberculosis in two big cities in Portugal: a spatial survival analysis. , 2016, The international journal of tuberculosis and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease.

[23]  Dimitris Rizopoulos,et al.  Dealing with missing covariates in epidemiologic studies: a comparison between multiple imputation and a full Bayesian approach , 2016, Statistics in medicine.

[24]  Robert Haining,et al.  Handbook of Spatial Epidemiology , 2021, Journal of the American Statistical Association.

[25]  Patrick E. Brown,et al.  Geostatistics in Small-Area Health Applications , 2016 .

[26]  R. Benedetti,et al.  A Bayesian Approach to Parameter Estimation in the Presence of Spatial Missing Data , 2016 .

[27]  E. Stuart,et al.  Multiple Imputation: A Flexible Tool for Handling Missing Data. , 2015, JAMA.

[28]  Benjamin M. Taylor Auxiliary Variable Markov Chain Monte Carlo for Spatial Survival and Geostatistical Models , 2015, 1501.01665.

[29]  E. T. Tchetgen Tchetgen,et al.  On Inverse Probability Weighting for Nonmonotone Missing at Random Data , 2014, Journal of the American Statistical Association.

[30]  Kate Tilling,et al.  Improving upon the efficiency of complete case analysis when covariates are MNAR , 2014, Biostatistics.

[31]  Joseph G Ibrahim,et al.  Missing data in clinical studies: issues and methods. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  R. Kay The Analysis of Survival Data , 2012 .

[33]  Luping Zhao,et al.  A Bayesian Semiparametric Temporally-Stratified Proportional Hazards Model with Spatial Frailties. , 2012, Bayesian analysis.

[34]  Breda Munoz,et al.  Applying Multiple Imputation with Geostatistical Models to Account for Item Nonresponse in Environmental Data , 2010 .

[35]  Jerome P. Reiter,et al.  A Note on Bayesian Inference After Multiple Imputation , 2010 .

[36]  Elizabeth A Stuart,et al.  American Journal of Epidemiology Practice of Epidemiology Multiple Imputation with Large Data Sets: a Case Study of the Children's Mental Health Initiative , 2022 .

[37]  Geert Verbeke,et al.  A Semi‐Parametric Shared Parameter Model to Handle Nonmonotone Nonignorable Missingness , 2009, Biometrics.

[38]  A. Rotnitzky,et al.  Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis by DANIELS, M. J. and HOGAN, J. W , 2009 .

[39]  R. Perera Research methods journal club: a gentle introduction to imputation of missing values , 2008, Evidence-based medicine.

[40]  Xiao-Hua Zhou,et al.  Multiple imputation: review of theory, implementation and software , 2007, Statistics in medicine.

[41]  James R Carpenter,et al.  Sensitivity analysis after multiple imputation under missing at random: a weighting approach , 2007, Statistical methods in medical research.

[42]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[43]  Ofer Harel,et al.  Multiple imputation for correcting verification bias , 2006, Statistics in medicine.

[44]  T. Stijnen,et al.  Review: a gentle introduction to imputation of missing values. , 2006, Journal of clinical epidemiology.

[45]  Mark D Schluchter,et al.  Shared parameter models for the joint analysis of longitudinal data and event times , 2006, Statistics in medicine.

[46]  Joon Jin Song,et al.  Bayesian multivariate spatial models and their applications , 2004 .

[47]  John L.P. Thompson,et al.  Missing data , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[48]  James P. LeSage,et al.  Models for Spatially Dependent Missing Data , 2004 .

[49]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[50]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[51]  Shin Ishii,et al.  A Bayesian missing value estimation method for gene expression profile data , 2003, Bioinform..

[52]  Daniel A. Newman Longitudinal Modeling with Randomly and Systematically Missing Data: A Simulation of Ad Hoc, Maximum Likelihood, and Multiple Imputation Techniques , 2003 .

[53]  R. Henderson,et al.  Modeling Spatial Variation in Leukemia Survival Data , 2002 .

[54]  Louise Ryan,et al.  Modeling Spatial Survival Data Using Semiparametric Frailty Models , 2002, Biometrics.

[55]  J. Schafer,et al.  Missing data: our view of the state of the art. , 2002, Psychological methods.

[56]  M. May Bayesian Survival Analysis. , 2002 .

[57]  J. Schafer,et al.  A comparison of inclusive and restrictive strategies in modern missing data procedures. , 2001, Psychological methods.

[58]  S. Lipsitz,et al.  Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable , 2001 .

[59]  W. Tierney,et al.  Multiple imputation in public health research , 2001, Statistics in medicine.

[60]  Craig K. Enders,et al.  A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data , 2001 .

[61]  J L Schafer,et al.  Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective. , 1998, Multivariate behavioral research.

[62]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[63]  D. Rubin Multiple Imputation After 18+ Years , 1996 .

[64]  R. Little,et al.  Pattern-mixture models for multivariate incomplete data with covariates. , 1996, Biometrics.

[65]  R. Little Missing-Data Adjustments in Large Surveys , 1988 .

[66]  J. Vaupel,et al.  The impact of heterogeneity in individual frailty on the dynamics of mortality , 1979, Demography.

[67]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[68]  Manash Pratim Barman,et al.  An Application of Spatial Frailty Models to Recovery Times of COVID-19 Patients in India under Bayesian Approach , 2021 .

[69]  Ansariadi,et al.  Bayesian spatial survival modelling for dengue fever in Makassar, Indonesia. , 2021, Gaceta sanitaria.

[70]  Lena Osterhagen,et al.  Multiple Imputation For Nonresponse In Surveys , 2016 .

[71]  L. Vogt Statistics For Spatial Data , 2016 .

[72]  James R Carpenter,et al.  Corrigendum: Improving upon the efficiency of complete case analysis when covariates are MNAR (10.1093/biostatistics/kxu023). , 2015, Biostatistics.

[73]  Haiming Zhou,et al.  Bayesian Semi- and Non-parametric Analysis for Spatially Correlated Survival Data , 2015 .

[74]  Joseph G Ibrahim,et al.  A note on the relationships between multiple imputation, maximum likelihood and fully Bayesian methods for missing responses in linear regression models. , 2014, Statistics and its interface.

[75]  Yulei He,et al.  Missing data analysis using multiple imputation: getting to the heart of the matter. , 2010, Circulation. Cardiovascular quality and outcomes.

[76]  Ofer Harel,et al.  Inferences on missing information under multiple imputation and two-stage multiple imputation , 2007 .

[77]  B. Carlin,et al.  Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. , 2003, Biostatistics.

[78]  D. Rubin,et al.  MULTIPLE IMPUTATIONS IN SAMPLE SURVEYS-A PHENOMENOLOGICAL BAYESIAN APPROACH TO NONRESPONSE , 2002 .

[79]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[80]  R. Little A Test of Missing Completely at Random for Multivariate Data with Missing Values , 1988 .

[81]  Donald B. Rubin,et al.  Selection Modeling Versus Mixture Modeling with Nonignorable Nonresponse , 1986 .