Recent progress on variable projection methods for structured low-rank approximation

Rank deficiency of a data matrix is equivalent to the existence of an exact linear model for the data. For the purpose of linear static modeling, the matrix is unstructured and the corresponding modeling problem is an approximation of the matrix by another matrix of a lower rank. In the context of linear time-invariant dynamic models, the appropriate data matrix is Hankel and the corresponding modeling problems becomes structured low-rank approximation. Low-rank approximation has applications in: system identification; signal processing, machine learning, and computer algebra, where different types of structure and constraints occur. This paper gives an overview of recent progress in efficient local optimization algorithms for solving weighted mosaic-Hankel structured low-rank approximation problems. In addition, the data matrix may have missing elements and elements may be specified as exact. The described algorithms are implemented in a publicly available software package. Their application to system identification, approximate common divisor, and data-driven simulation problems is described in this paper and is illustrated by reproducible simulation examples. As a data modeling paradigm the low-rank approximation setting is closely related to the behavioral approach in systems and control, total least squares, errors-in-variables modeling, principal component analysis, and rank minimization.

[1]  Georg Heinig,et al.  Generalized inverses of Hankel and Toeplitz mosaic matrices , 1995 .

[2]  Bart De Moor,et al.  Linear dynamic filtering with noisy input and output , 2005, Autom..

[3]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[4]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[5]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[6]  Siep Weiland,et al.  Singular Value Decompositions and Low Rank Approximations of Tensors , 2010, IEEE Transactions on Signal Processing.

[7]  Petre Stoica,et al.  Common factor estimation and two applications in signal processing , 2004, Signal Process..

[8]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[9]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[10]  Sabine Van Huffel,et al.  Block-Toeplitz/Hankel Structured Total Least Squares , 2005, SIAM J. Matrix Anal. Appl..

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  A. Antoniadis,et al.  Wavelets and Statistics , 1995 .

[13]  Ali H. Sayed,et al.  Displacement Structure: Theory and Applications , 1995, SIAM Rev..

[14]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[15]  Ivan Markovsky,et al.  Structured low-rank approximation as a rational function minimization , 2012 .

[16]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[17]  Ivan Markovsky,et al.  Structured Low-Rank Approximation with Missing Data , 2013, SIAM J. Matrix Anal. Appl..

[18]  Yves Nievergelt,et al.  Hyperspheres and hyperplanes fitted seamlessly by algebraic constrained total least-squares , 2001 .

[19]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[20]  Ivan Markovsky,et al.  Software for weighted structured low-rank approximation , 2014, J. Comput. Appl. Math..

[21]  Donald W. Tufts,et al.  Estimation of a signal waveform from noisy data using low-rank approximation to a data matrix , 1993, IEEE Trans. Signal Process..

[22]  Luigi Garibaldi,et al.  A reduced-rank spectral approach to multi-sensor enhancement of large numbers of sinusoids in unknown noise fields , 2007, Signal Process..

[23]  Sabine Van Huffel,et al.  Fast Structured Total Least Squares Algorithm for Solving the Basic Deconvolution Problem , 2000, SIAM J. Matrix Anal. Appl..

[24]  Etienne de Klerk,et al.  Global optimization of rational functions: a semidefinite programming approach , 2006, Math. Program..

[25]  Ronald R. Coifman,et al.  In Wavelets and Statistics , 1995 .

[26]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[27]  Sabine Van Huffel,et al.  Fast algorithm for solving the Hankel/Toeplitz Structured Total Least Squares problem , 2004, Numerical Algorithms.

[28]  Sabine Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach (Mathematical Modeling and Computation) (Mathematical Modeling and Computation) , 2006 .

[29]  Hans J. Stetter,et al.  Numerical polynomial algebra , 2004 .

[30]  Louis L. Scharf,et al.  The SVD and reduced rank signal processing , 1991, Signal Process..

[31]  Ivan Markovsky,et al.  Closed-loop data-driven simulation , 2010, Int. J. Control.

[32]  Ivan Markovsky,et al.  Structured low-rank approximation and its applications , 2008, Autom..

[33]  C. Heij,et al.  Global total least squares modeling of multivariable time series , 1995, IEEE Trans. Autom. Control..

[34]  W. Gander,et al.  Least-squares fitting of circles and ellipses , 1994 .

[35]  Ivan Markovsky,et al.  Algorithms and Literate Programs for Weighted Low-Rank Approximation with Missing Data , 2011 .

[36]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[37]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[38]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[39]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[40]  Robert E. Mahony,et al.  The geometry of weighted low-rank approximations , 2003, IEEE Trans. Signal Process..

[41]  Jerry M. Mendel,et al.  The constrained total least squares technique and its applications to harmonic superresolution , 1991, IEEE Trans. Signal Process..

[42]  Michael W. Berry,et al.  Algorithms and applications for approximate nonnegative matrix factorization , 2007, Comput. Stat. Data Anal..

[43]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[44]  Robert E. Mahony,et al.  A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..

[45]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[46]  Pierre-Antoine Absil,et al.  RTRMC: A Riemannian trust-region method for low-rank matrix completion , 2011, NIPS.

[47]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[48]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[49]  W. Gander,et al.  Fitting of circles and ellipses: Least squares solution , 1994 .

[50]  J. Ben Rosen,et al.  Total Least Norm Formulation and Solution for Structured Problems , 1996, SIAM J. Matrix Anal. Appl..

[51]  Christiaan Heij,et al.  Introduction to mathematical systems theory , 1997 .

[52]  Berend Roorda Algorithms for global total least squares modelling of finite multivariable time series , 1995, Autom..

[53]  Darren T. Andrews,et al.  Maximum likelihood principal component analysis , 1997 .

[54]  Jan C. Willems,et al.  Introduction to mathematical systems theory: a behavioral approach, Texts in Applied Mathematics 26 , 1999 .

[55]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[56]  S. Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach , 2006 .

[57]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[58]  David L. Donoho,et al.  WaveLab and Reproducible Research , 1995 .

[59]  Sabine Van Huffel,et al.  Total least squares methods , 2010 .

[60]  Haesun Park,et al.  Bounded Matrix Low Rank Approximation , 2012, 2012 IEEE 12th International Conference on Data Mining.

[61]  B. Moor Structured total least squares and L2 approximation problems , 1993 .

[62]  Sun-Yuan Kung,et al.  A new identification and model reduction algorithm via singular value decomposition , 1978 .

[63]  Paolo Rapisarda,et al.  Data-driven simulation and control , 2008, Int. J. Control.

[64]  W. Gander,et al.  Fitting of circles and ellipses least squares solution , 1995 .

[65]  Narendra Karmarkar,et al.  On Approximate GCDs of Univariate Polynomials , 1998, J. Symb. Comput..

[66]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[67]  C. Paige Computer solution and perturbation analysis of generalized linear least squares problems , 1979 .

[68]  R. Kumaresan,et al.  Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise , 1982 .

[69]  Erich Kaltofen,et al.  Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials , 2006, ISSAC '06.

[70]  Ivan Markovsky,et al.  Variable projection for affinely structured low-rank approximation in weighted 2-norms , 2014, J. Comput. Appl. Math..