Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain

[1]  C R Houser,et al.  Morphological diversity of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex , 1983, Journal of neurocytology.

[2]  J. Storm,et al.  Action potential repolarization and a fast after‐hyperpolarization in rat hippocampal pyramidal cells. , 1987, The Journal of physiology.

[3]  R. McLendon,et al.  Immunohistochemistry of the Glial Fibrillary Acidic Protein: Basic and Applied Considerations , 1994, Brain pathology.

[4]  D. Benson,et al.  Alpha calcium/calmodulin-dependent protein kinase II selectively expressed in a subpopulation of excitatory neurons in monkey sensory- motor cortex: comparison with GAD-67 expression , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[6]  S. K. Malhotra,et al.  Reactive astrocytes: cellular and molecular cues to biological function , 1997, Trends in Neurosciences.

[7]  E G Jones,et al.  Cell- and Lamina-Specific Expression and Activity-Dependent Regulation of Type II Calcium/Calmodulin-Dependent Protein Kinase Isoforms in Monkey Visual Cortex , 1998, The Journal of Neuroscience.

[8]  J. Bloch,et al.  Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. , 2000, Science.

[9]  Pankaj Sah,et al.  Calcium‐Activated Potassium Currents In Mammalian Neurons , 2000, Clinical and experimental pharmacology & physiology.

[10]  J. Bekkers Distribution of slow AHP channels on hippocampal CA1 pyramidal neurons. , 2000, Journal of neurophysiology.

[11]  G. Schatten,et al.  Transgenic monkeys produced by retroviral gene transfer into mature oocytes. , 2001, Science.

[12]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[13]  E. Seidemann,et al.  Dynamics of Depolarization and Hyperpolarization in the Frontal Cortex and Saccade Goal , 2002, Science.

[14]  C. Elger,et al.  Destruction of neurons by cytotoxic T cells: A new pathogenic mechanism in rasmussen's encephalitis , 2002, Annals of neurology.

[15]  C. Schwarz,et al.  Spatiotemporal effects of microstimulation in rat neocortex: a parametric study using multielectrode recordings. , 2003, Journal of neurophysiology.

[16]  B. Lancaster,et al.  SK channels and the varieties of slow after‐hyperpolarizations in neurons , 2003, The European journal of neuroscience.

[17]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Richard C Saunders,et al.  DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Honda,et al.  Dawn of the evolution of photoelectrochemistry , 2004 .

[21]  E. G. Jones,et al.  Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities , 2004, Experimental Brain Research.

[22]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[23]  Frauke Zipp,et al.  Neuronal Damage in Autoimmune Neuroinflammation Mediated by the Death Ligand TRAIL , 2005, Neuron.

[24]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Ishizuka,et al.  Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels , 2006, Neuroscience Research.

[26]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[27]  C. Gilbert,et al.  Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex , 2006, Neuron.

[28]  H. Monyer,et al.  Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation. , 2006, Journal of neurophysiology.

[29]  K. P. Murphy,et al.  Janeway's immunobiology , 2007 .

[30]  W. C. Hall,et al.  High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice , 2007, Proceedings of the National Academy of Sciences.

[31]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[32]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[33]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[34]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[35]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[36]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[37]  J. Bachevalier,et al.  Towards a transgenic model of Huntington’s disease in a non-human primate , 2008, Nature.

[38]  Xue Han,et al.  Prosthetic systems for therapeutic optical activation and silencing of genetically targeted neurons , 2008, SPIE BiOS.

[39]  T. Murphy,et al.  Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice , 2009, Nature Methods.