Discriminant projection embedding for face and palmprint recognition

In this paper, we propose a new supervised linear dimensionality reduction method called discriminant projection embedding (DPE). DPE can preserve within-class neighboring geometry and extract between-class relevant structures for classification effectively. The proposed method is applied to face and palmprint recognition and is examined using the AR and FERET face databases and the PolyU palmprint database. Experimental results show that DPE consistently outperforms other up-to-date supervised linear dimensionality reduction methods when the training sample size per class is small. This demonstrates the effectiveness and robustness of DPE.

[1]  David Zhang,et al.  Online Palmprint Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[3]  Yajie Tian,et al.  Handbook of face recognition , 2003 .

[4]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[5]  Ja-Chen Lin,et al.  A new LDA-based face recognition system which can solve the small sample size problem , 1998, Pattern Recognit..

[6]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[7]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[9]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[10]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[11]  Aapo Hyvärinen,et al.  Equivalence of Some Common Linear Feature Extraction Techniques for Appearance-based Object Recognition Tasks , 2022 .

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[14]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[17]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  A. Martínez,et al.  The AR face databasae , 1998 .

[19]  David Zhang,et al.  On-Line Palmprint Identification , 2005 .

[20]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  M. Bressan,et al.  Nonparametric discriminant analysis and nearest neighbor classification , 2003, Pattern Recognit. Lett..

[22]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[23]  Xuelong Li,et al.  Supervised Tensor Learning , 2005, ICDM.

[24]  Dacheng Tao,et al.  Nonparametric discriminant analysis in relevance feedback for content-based image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..