Periodic motion planning for virtually constrained Euler-Lagrange systems
暂无分享,去创建一个
A. Shiriaev | A. Robertsson | J. Perram | A. Sandberg | J. Perram | A. Robertsson | Anders Sandberg | Anton S. Shiriaev
[1] P. Hartman. Ordinary Differential Equations , 1965 .
[2] Christine Chevallereau,et al. RABBIT: a testbed for advanced control theory , 2003 .
[3] Anton S. Shiriaev,et al. Partial stabilization of underactuated Euler-Lagrange systems via a class of feedback transformations , 2002, Syst. Control. Lett..
[4] Daniel E. Koditschek,et al. Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..
[5] A. M. Lyapunov. The general problem of the stability of motion , 1992 .
[6] Carlos Canudas-de-Wit,et al. Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.
[7] Franck Plestan,et al. Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..
[8] Naomi Ehrich Leonard,et al. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..
[9] Peter I. Corke,et al. Nonlinear control of the Reaction Wheel Pendulum , 2001, Autom..
[10] Rogelio Lozano,et al. Non-linear Control for Underactuated Mechanical Systems , 2001 .