Quantifying global exergy resources

Exergy is used as a common currency to assess and compare the reservoirs of theoretically extractable work we call energy resources. Resources consist of matter or energy with properties different from the predominant conditions in the environment. These differences can be classified as physical, chemical, or nuclear exergy. This paper identifies the primary exergy reservoirs that supply exergy to the biosphere and quantifies the intensive and extensive exergy of their derivative secondary reservoirs, or resources. The interconnecting accumulations and flows among these reservoirs are illustrated to show the path of exergy through the terrestrial system from input to its eventual natural or anthropogenic destruction. The results are intended to assist in evaluation of current resource utilization, help guide fundamental research to enable promising new energy technologies, and provide a basis for comparing the resource potential of future energy options that is independent of technology and cost.

[1]  Marc A. Rosen,et al.  Exergetic Efficiencies and the Exergy Content of Terrestrial Solar Radiation , 2004 .

[2]  K. Wark,et al.  Advanced thermodynamics for engineers , 1994 .

[3]  Donald L. Klass,et al.  Biomass for Renewable Energy and Fuels , 2004 .

[4]  M. Thring World Energy Outlook , 1977 .

[5]  Mehmet Kanoglu,et al.  Exergy analysis of a dual-level binary geothermal power plant , 2002 .

[6]  Nebojsa Nakicenovic,et al.  Global energy : perspectives , 1998 .

[7]  J. Peixoto,et al.  Physics of climate , 1992 .

[8]  Jan D. Miller,et al.  FRACTIONATION AND CHARACTERIZATION OF UTAH TAR SAND BITUMENS : INFLUENCE OF CHEMICAL COMPOSITION ON BITUMEN VISCOSITY , 1991 .

[9]  V. S. Shirley,et al.  TABLE OF NUCLIDES , 1980 .

[10]  L. Muffler,et al.  Methods for regional assessment of geothermal resources , 1977 .

[11]  Hamdy M. Shafey,et al.  Thermodynamics of the Conversion of Solar Radiation , 1990 .

[12]  M J Tucker,et al.  WAVES IN OCEAN ENGINEERING , 2001 .

[13]  Wei Wang,et al.  Wind Energy Input to the Surface Waves , 2004 .

[14]  V P Puzinauskas,et al.  DIFFERENCES BETWEEN PETROLEUM ASPHALT, COAL-TAR PITCH AND ROAD TAR , 1978 .

[15]  Liping Zhong,et al.  Studies on the synergetic effects of mineral and steam on the composition changes of heavy oils , 2001 .

[16]  Marc L. Imhoff,et al.  Global patterns in human consumption of net primary production , 2004, Nature.

[17]  Linette M. Watkins,et al.  Isolation and Characterization of the Saturate and Aromatic Fractions of a Maya Crude Oil , 2000 .

[18]  A. H. Wapstra,et al.  The 1995 update to the atomic mass evaluation , 1995 .

[19]  Michael Q. Wang,et al.  The Energy Balance of Corn Ethanol: An Update , 2002 .

[20]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[21]  Cutler J. Cleveland,et al.  Encyclopedia of Energy , 2004 .

[22]  P. Falkowski The role of phytoplankton photosynthesis in global biogeochemical cycles , 1994, Photosynthesis Research.

[23]  Jan Szargut,et al.  Anthropogenic and natural exergy losses (exergy balance of the Earth’s surface and atmosphere) , 2003 .

[24]  R. D. Ray,et al.  Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry , 1996, Nature.

[25]  M. R. Gustavson,et al.  Limits to Wind Power Utilization , 1979, Science.

[26]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[27]  K. Kvenvolden,et al.  Gas Hydrate and Humans , 2000 .

[28]  Reinhard Schlickeiser,et al.  Cosmic Ray Astrophysics , 2002 .

[29]  Marc A. Rosen,et al.  The exergy flux of radiative heat transfer with an arbitrary spectrum , 2002 .

[30]  Element synthesis in stars , 2001, astro-ph/0101476.

[31]  G. Wasserburg,et al.  The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin , 1986 .

[32]  Göran Wall,et al.  Exergy - a useful concept within resource accounting , 1977 .

[33]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[34]  L. T. Fan,et al.  Estimation of Energy (Enthalpy) and Exergy (Availability) Contents in Structurally Complicated Materials , 1982 .

[35]  Carl Folke,et al.  Linkages among water vapour flows, food production and terrestrial ecosystem services. , 1999 .

[36]  R. Berner The long-term carbon cycle, fossil fuels and atmospheric composition , 2003, Nature.

[37]  D. Doelling,et al.  Clouds and the Earth’s Radiant Energy System (CERES) FluxByCldTyp Edition 4 Data Product , 2022, Journal of Atmospheric and Oceanic Technology.

[38]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[39]  J. Keenan Availability and irreversibility in thermodynamics , 1951 .

[40]  A. Celik On the distributional parameters used in assessment of the suitability of wind speed probability density functions , 2004 .

[41]  Mehmet Özger,et al.  Statistical investigation of expected wave energy and its reliability , 2004 .

[42]  D. Legates,et al.  Mean seasonal and spatial variability in gauge‐corrected, global precipitation , 1990 .

[43]  Gregg Marland,et al.  THE POTENTIAL OF BIOMASS FUELS IN THE CONTEXT OF GLOBAL CLIMATE CHANGE: Focus on Transportation Fuels , 2000 .

[44]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[45]  Thomas B. Reed,et al.  Thermal Data for Natural and Synthetic Fuels , 1998 .

[46]  Keng Choon Lee,et al.  Classification of geothermal resources by exergy , 2001 .

[47]  Hasbi Yavuz,et al.  Exergy analysis of a pressurized-water reactor nuclear-power plant , 2001 .

[48]  N. Sleep,et al.  Initiation of clement surface conditions on the earliest Earth , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Jan Szargut,et al.  Exergy Analysis of Thermal, Chemical, and Metallurgical Processes , 1988 .

[50]  V. S. Stepanov,et al.  Chemical energies and exergies of fuels , 1995 .

[51]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[52]  T. Pihu,et al.  Calculation of qualitative and quantitative composition of Estonian oil shale and its combustion products. Part 1. Calculation on the basis of heating value , 2003 .

[53]  I. Gorst Survey of energy resources , 1985 .

[54]  H. Brouwers,et al.  Fly ash reactivity: Extension and application of a shrinking core model and thermodynamic approach , 2002 .

[55]  Arthur F. Pillsbury,et al.  The Salinity of Rivers , 1981 .