Multilevel iterative solvers for the edge finite element solution of the 3D Maxwell equation

In the edge vector finite element solution of the frequency domain Maxwell equations, the presence of a large kernel of the discrete rotor operator is known to ruin convergence of standard iterative solvers. We extend the approach of [1] and, using domain decomposition ideas, construct a multilevel iterative solver where the projection with respect to the kernel is combined with the use of a hierarchical representation of the vector finite elements. The new iterative scheme appears to be an efficient solver for the edge finite element solution of the frequency domain Maxwell equations. The solver can be seen as a variable preconditioner and, thus, accelerated by Krylov subspace techniques (e.g. GCR or FGMRES). We demonstrate the efficiency of our approach on a test problem with strong jumps in the conductivity. [1] R. Hiptmair. Multigrid method for Maxwell's equations. SIAM J. Numer. Anal., 36(1):204-225, 1999.

[1]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[2]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[3]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[4]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[5]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[6]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[7]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[8]  R. Hiptmair Multigrid Method for Maxwell's Equations , 1998 .

[9]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[10]  Ralf Hiptmair,et al.  Multilevel solution of the time‐harmonic Maxwell's equations based on edge elements , 1999 .

[11]  Joseph E. Pasciak,et al.  Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations , 2004, SIAM J. Numer. Anal..

[12]  H. Igarashi,et al.  On convergence of ICCG applied to finite-element equation for quasi-static fields , 2002 .

[13]  Dianne P. O'Leary,et al.  A Multigrid Method Enhanced by Krylov Subspace Iteration for Discrete Helmholtz Equations , 2001, SIAM J. Sci. Comput..

[14]  Randolph E. Bank,et al.  Hierarchical bases and the finite element method , 1996, Acta Numerica.

[15]  Hajime Igarashi,et al.  On the property of the curl-curl matrix in finite element analysis with edge elements , 2001 .

[16]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[17]  Ilaria Perugia,et al.  A mixed formulation for 3D magnetostatic problems: theoretical analysis and face-edge finite element approximation , 1999, Numerische Mathematik.

[18]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[19]  G. Golub,et al.  The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems , 1988 .

[20]  Gene H. Golub,et al.  Inner and Outer Iterations for the Chebyshev Algorithm , 1998 .

[21]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[22]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[23]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.