Monolayer Oxidized‐MXene Piezo‐Resonators with Single Resonant Peak by Interior Schottky Effect

Nanoelectromechanical systems (NEMS) of 2D nanomaterials are potent exploration devices for high‐sensitive mechanical coupling, mass testing, and biosensing. Nevertheless, the internal interference from the multiple resonant states easily causes the deviation and overlap of the target signal. Here, an oxidized‐MXene resonant system performs the unique response peak at the fundamental frequency f0,1 of 3.37 ± 0.04 MHz within the ultrawide frequency up to 400 MHz, due to the ferroelectric‐conductive structure. This unique resonant peak can effectively avoid the dispute of indistinguishable vibratal states. The resonator exhibits advanced performances with a large dynamic range of 70.41 ± 0.15 dB and low thermomechanical motion spectral density of 669 fmHz$669\;\frac{{{\rm{fm}}}}{{\sqrt {{\rm{Hz}}} }}$ . The molecular sensing mechanisms of the oxidized‐MXene system are systematically studied to achieve repeatable detection with high mass resolution (low to 8.00 ± 0.01 × 10‐19 g). These consequences can afford potential guidelines for the NEMS devices in terms of the credible and legible sensors for ultra‐accurate and interference‐free measurements.

[1]  Y. Gogotsi,et al.  How Water Attacks MXene , 2022, Chemistry of Materials.

[2]  Yan Peng,et al.  Monolayer MXene Nanoelectromechanical Piezo‐Resonators with 0.2 Zeptogram Mass Resolution , 2022, Advanced science.

[3]  Yachun Liang,et al.  Frequency Scaling, Elastic Transition, and Broad-Range Frequency Tuning in WSe2 Nanomechanical Resonators. , 2022, Nano letters.

[4]  Dongchen Tan,et al.  Piezoelectricity in Monolayer and Multilayer Ti3C2Tx MXenes: Implications for Piezoelectric Devices , 2021, ACS Applied Nano Materials.

[5]  Dongchen Tan,et al.  Piezoelectricity in monolayer MXene for nanogenerators and piezotronics , 2021, Nano Energy.

[6]  M. Calleja,et al.  High Dynamic Range Nanowire Resonators , 2021, Nano letters.

[7]  Jaesung Lee,et al.  Straining and Tuning Atomic Layer Nanoelectromechanical Resonators via Comb‐Drive MEMS Actuators , 2020, Advanced Materials Technologies.

[8]  Lifeng Wang,et al.  Nonlinear forced vibration of bilayer van der Waals materials drum resonator , 2020 .

[9]  Chengming Jiang,et al.  Single-layer MoS2 mechanical resonant piezo-sensors with high-mass-sensitivity. , 2020, ACS applied materials & interfaces.

[10]  Hee‐Tae Jung,et al.  In Situ Formation of Multiple Schottky Barriers in a Ti3C2 MXene Film and its Application in Highly Sensitive Gas Sensors , 2020, Advanced Functional Materials.

[11]  A. Sinitskii,et al.  Partially Oxidized Ti3C2Tx MXenes for Fast and Selective Detection of Organic Vapors at Part-per-Million Concentrations , 2020, ACS Applied Nano Materials.

[12]  M. Beck,et al.  Comprehensive DFT study of hydroxyl coverage on titania surfaces , 2019 .

[13]  C. Koo,et al.  Non-Polar Organic Dispersion of 2D Ti3C2Tx MXene Flakes via Simultaneous Interfacial Chemical Grafting and Phase Transfer Method. , 2019, ACS nano.

[14]  A. Kis,et al.  Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators , 2019, Nature Communications.

[15]  B. Meng,et al.  High Performance Humidity Sensor Based on Urchin-like Composite of Ti3C2 MXene-derived TiO2 Nanowires. , 2019, ACS applied materials & interfaces.

[16]  F. Alijani,et al.  High-Frequency Stochastic Switching of Graphene Resonators Near Room Temperature , 2018, Nano letters.

[17]  A. Bachtold,et al.  Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators , 2018, Nano letters.

[18]  Jihan Kim,et al.  Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. , 2018, ACS nano.

[19]  Lai-fei Cheng,et al.  2D‐Layered Carbon/TiO2 Hybrids Derived from Ti3C2MXenes for Photocatalytic Hydrogen Evolution under Visible Light Irradiation , 2017 .

[20]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[21]  M. S. Skolnick,et al.  Tuning Nonlinear Mechanical Mode Coupling in GaAs Nanowires Using Cross-Section Morphology Control. , 2016, Nano letters.

[22]  Yunlin Liu,et al.  Sensitive, Selective, and Fast Detection of ppb-Level H2S Gas Boosted by ZnO-CuO Mesocrystal , 2016, Nanoscale Research Letters.

[23]  Zachary D. Hood,et al.  Titania Composites with 2 D Transition Metal Carbides as Photocatalysts for Hydrogen Production under Visible-Light Irradiation. , 2016, ChemSusChem.

[24]  Hao Yu,et al.  Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. , 2016, ACS applied materials & interfaces.

[25]  Guang-Can Guo,et al.  Strongly Coupled Nanotube Electromechanical Resonators. , 2016, Nano letters.

[26]  S. Dou,et al.  Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries , 2015 .

[27]  Chengming Jiang,et al.  The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection. , 2015, Nano letters.

[28]  Jaesung Lee,et al.  Spatial mapping of multimode Brownian motions in high-frequency silicon carbide microdisk resonators , 2014, Nature Communications.

[29]  Zhong Lin Wang,et al.  Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors , 2014, Nano Research.

[30]  Philip X.-L. Feng,et al.  Dynamic range of atomically thin vibrating nanomechanical resonators , 2014 .

[31]  W. J. Venstra,et al.  Single‐Layer MoS2 Mechanical Resonators , 2013, Advanced materials.

[32]  G. Steele,et al.  Large and tunable photothermoelectric effect in single-layer MoS2. , 2013, Nano letters.

[33]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[34]  J. Chaste,et al.  Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. , 2011, Nature nanotechnology.

[35]  Robert A. Barton,et al.  High, size-dependent quality factor in an array of graphene mechanical resonators. , 2011, Nano letters.

[36]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[37]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[38]  P. Kim,et al.  Performance of monolayer graphene nanomechanical resonators with electrical readout. , 2009, Nature nanotechnology.

[39]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[40]  Klaus Kern,et al.  Elastic properties of chemically derived single graphene sheets. , 2008, Nano letters.

[41]  Zhong Lin Wang,et al.  Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. , 2007, Nano letters.

[42]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[43]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[44]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[45]  M. Roukes,et al.  Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.

[46]  Thein Wah,et al.  Vibration of Circular Plates , 1962 .