A simple technique to improve linearized reformulations of fractional (hyperbolic) 0-1 programming problems

We consider reformulations of fractional (hyperbolic) 0-1 programming problems as equivalent mixed-integer linear programs (MILP). The key idea of the proposed technique is to exploit binary representations of certain linear combinations of the 0-1 decision variables. Consequently, under some mild conditions, the number of product terms that need to be linearized can be greatly decreased. We perform numerical experiments comparing the proposed approach against the previous MILP reformulations used in the literature.

[1]  H. P. Williams Experiments in the formulation of integer programming problems , 1974 .

[2]  W. Art Chaovalitwongse,et al.  A new linearization technique for multi-quadratic 0-1 programming problems , 2004, Oper. Res. Lett..

[3]  George L. Nemhauser,et al.  Modeling disjunctive constraints with a logarithmic number of binary variables and constraints , 2011, Math. Program..

[4]  M. Grunspan,et al.  Hyperbolic integer programming , 1973 .

[5]  A. L. Saipe Solving a (0, 1) hyperbolic program by branch and bound , 1975 .

[6]  Toshimde Ibaraki Integer programming formulation of combinatorial optimization problems , 1976, Discret. Math..

[7]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[8]  Juan José Miranda Bront,et al.  A branch-and-cut algorithm for the latent-class logit assortment problem , 2014, Discret. Appl. Math..

[9]  Hanif D. Sherali,et al.  A fractional programming approach for retail category price optimization , 2010, J. Glob. Optim..

[10]  Warren P. Adams,et al.  Base-2 Expansions for Linearizing Products of Functions of Discrete Variables , 2012, Oper. Res..

[11]  Panos M. Pardalos,et al.  On complexity of unconstrained hyperbolic 0-1 programming problems , 2005, Oper. Res. Lett..

[12]  Nikolaos V. Sahinidis,et al.  Global Optimization of 0-1 Hyperbolic Programs , 2002, J. Glob. Optim..

[13]  S. C. Agrawal An Alternate Method on Integer Solutions to Linear Fractional Functionals by a Branch and Bound Technique , 1977 .

[14]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[15]  Han-Lin Li A GLOBAL APPROACH FOR GENERAL 0-1 FRACTIONAL-PROGRAMMING , 1994 .

[16]  Tai-Hsi Wu A note on a global approach for general 0-1 fractional programming , 1997 .

[17]  D. Granot,et al.  On Solving Fractional (0, 1) Programs By Implicit Enumeration , 1976 .

[18]  Warren P. Adams,et al.  Linear forms of nonlinear expressions: New insights on old ideas , 2007, Oper. Res. Lett..

[19]  Lawrence J. Watters Letter to the Editor - Reduction of Integer Polynomial Programming Problems to Zero-One Linear Programming Problems , 1967, Oper. Res..

[20]  Stanislav Busygin,et al.  Finding checkerboard patterns via fractional 0–1 programming , 2010, J. Comb. Optim..

[21]  Panos M. Pardalos,et al.  Feature Selection for Consistent Biclustering via Fractional 0–1 Programming , 2005, J. Comb. Optim..

[22]  Pierre Hansen,et al.  Hyperbolic 0–1 programming and query optimization in information retrieval , 1991, Math. Program..

[23]  Hanif D. Sherali,et al.  An improved linearization strategy for zero-one quadratic programming problems , 2006, Optim. Lett..

[24]  Pierre Hansen,et al.  Boolean query optimization and the 0-1 hyperbolic sum problem , 1990, Annals of Mathematics and Artificial Intelligence.

[25]  Warren P. Adams,et al.  A simple recipe for concise mixed 0-1 linearizations , 2005, Oper. Res. Lett..

[26]  Lawrence J. Watters,et al.  REDUCTION OF INTEGER POLYNOMIAL PROGRAMMING PROBLEMS TO ZERO-ONE LINEAR PROGRAMMING PROBLEMS , 2016 .

[27]  Edoardo Amaldi,et al.  Hyperbolic set covering problems with competing ground-set elements , 2012, Math. Program..

[28]  M. C. Puri,et al.  Cutting Plane Technique for the Set Covering Problem with Linear Fractional Functional , 1977 .

[29]  Oleg A. Prokopyev Fractional Zero-One Programming , 2009, Encyclopedia of Optimization.