The effect of general statistical fiber misalignment on predicted damage initiation in composites

A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensors, which are established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation. Published by Elsevier Ltd.

[1]  Norman A. Fleck,et al.  Compressive strength of fibre composites with random fibre waviness , 2004 .

[2]  Anthony M. Waas,et al.  Compressive Failure of Fiber Composites under Multi-Axial Loading , 2006 .

[3]  S. W. Yurgartis Measurement of small angle fiber misalignments in continuous fiber composites , 1987 .

[4]  Serdar Göktepe,et al.  A micro–macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity , 2005 .

[5]  Martin Kroon,et al.  Modeling the dispersion effects of contractile fibers in smooth muscles , 2010 .

[6]  H. Toghiani,et al.  Classical micromechanics modeling of nanocomposites with carbon nanofibers and interphase , 2011 .

[7]  Mark J. Shuart,et al.  Failure of compression-loaded multidirectional composite laminates , 1989 .

[8]  Zdeněk P. Bažant,et al.  Mechanics of solid materials , 1992 .

[9]  Jacob Aboudi,et al.  Micromechanical Analysis of Composites by the Method of Cells , 1989 .

[10]  B. BIJUIANSKY,et al.  COMPRESSIVE FAILURE OF FIBRE COMPOSITES , 2002 .

[11]  Anton Matzenmiller,et al.  A Comparison of Micromechanical Models for the Homogenization of Microheterogeneous Elastic Composites , 2009 .

[12]  Serdar Göktepe,et al.  A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage , 2005 .

[13]  A. Waas,et al.  Progressive Failure of a Unidirectional Fiber-Reinforced Composite , 2012 .

[14]  J. Lemaître,et al.  Handbook of materials behavior models , 2001 .

[15]  Andreas Menzel,et al.  Anisotropic density growth of bone-A computational micro-sphere approach , 2012 .

[16]  Isaac M. Daniel,et al.  Characterization and modeling of mechanical behavior of polymer/clay nanocomposites , 2003 .

[17]  Serdar Göktepe,et al.  A micro-macro approach to rubber-like materials—Part I: the non-affine micro-sphere model of rubber elasticity , 2004 .

[18]  George J. Dvorak,et al.  Micromechanics of composite materials , 2013 .

[19]  Sumit Sharma Micromechanics , 1965, Nature.

[20]  N. Fleck,et al.  The failure of composite tubes due to combined compression and torsion , 1994 .

[21]  B. Bednarcyk,et al.  Local field effects in titanium matrix composites subject to fiber-matrix debonding , 2004 .

[22]  T. D. Papathanasiou,et al.  Identification of fiber misalignment in continuous fiber composites , 2003 .

[23]  Michael R Wisnom,et al.  The effect of fibre misalignment on the compressive strength of unidirectional carbon fibre/epoxy , 1990 .

[24]  H. Hosseini-Toudeshky,et al.  Experimental and analytical study on fiber-kinking failure mode of laminated composites , 2014 .

[25]  Bernard Budiansky,et al.  Mechanics of materials and material characterizationMicromechanics , 1983 .

[26]  Brett A. Bednarcyk,et al.  Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach , 2012 .

[27]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[28]  Carl T. Herakovich,et al.  Mechanics of Fibrous Composites , 1997 .

[29]  Anthony M. Waas,et al.  Compressive failure of composites, part I: Testing and micromechanical theories , 1996 .

[30]  Anthony M. Waas,et al.  Compressive failure of composites, part II: Experimental studies , 1996 .

[31]  Andreas Menzel,et al.  A micro‐sphere‐based remodelling formulation for anisotropic biological tissues , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  Tim Schmitz,et al.  Mechanics Of Composite Materials , 2016 .

[33]  Hongwei Zhou,et al.  Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations , 2013 .

[34]  Tess J. Moon,et al.  Identification of the Most Significant Processing Parameters on the Development of Fiber Waviness in Thin Laminates , 2002 .

[35]  Norman A. Fleck,et al.  Compressive failure of fibre composites , 1993 .

[36]  Y. S. A. Rjoub,et al.  Two analogous methods for estimating the compressive strength of fibrous composites , 2013 .

[37]  M. Doblaré,et al.  On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue , 2010 .

[38]  J. Modniks,et al.  Modeling the non-linear deformation of a short-flax-fiber-reinforced polymer composite by orientation averaging , 2013 .

[39]  Andreas Menzel,et al.  Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling , 2009 .

[40]  R. G. C. Arridge An introduction to polymer mechanics , 1985 .

[41]  R. M. Christensen,et al.  Effective Stiffness of Randomly Oriented Fibre Composites , 1972 .

[42]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .