Electrostatic interactions in molecular mechanics (MM2) calculations via PEOE partial charges I. Haloalkanes

The PEOE (partial equalization of orbital electronegativity) procedure has been modified slightly and reparametrized for haloalkanes to calculate partial atomic charges suitable for evaluation of dipole moments and electrostatic energies in conjunction with molecular mechanics (MM2) calculations. Dipole moments of 66 haloalkanes are calculated with an average absolute deviation of 0.14 D from experimental values. The conformational energies of 40 compounds have been calculated and the agreement with experimental data is generally good and compares well with calculations by the IDME (induced dipole moment and energy) method. In addition, carbon and proton charges correlate well with C‐1s core binding energies and 1H‐NMR (nuclear magnetic resonance) shifts for halomethanes. The most striking benefit of treating electrostatics through a set of partial charges compared to the standard MM2 bond dipole approach is demonstrated by calculations on 1,4‐disubstituted cyclohexanes, for which standard MM2 fails to predict the most stable conformation.

[1]  N. L. Allinger,et al.  Conformational analysis—CXIX : Charge distribution in the molecular mechanics method1 , 1977 .

[2]  Johann Gasteiger,et al.  Quantitative models of gas-phase proton-transfer reactions involving alcohols, ethers, and their thio analogs. Correlation analyses based on residual electronegativity and effective polarizability , 1984 .

[3]  R. D. Topsom Contribution of theoretical chemistry to an understanding of electronic substituent effects , 1983 .

[4]  B. E. Hudson,et al.  Structural Determination of cis- and trans-1,3-Dibromocyclohexane1 , 1963 .

[5]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[6]  Giuseppe Del Re,et al.  812. A simple MO–LCAO method for the calculation of charge distributions in saturated organic molecules , 1958 .

[7]  K. B. Wiberg Effect of substituents on the electron densities in methane. .sigma. and .pi. Interactions in saturated systems , 1980 .

[8]  M. Gordon,et al.  Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. , 1967, Journal of the American Chemical Society.

[9]  H. H. Jaffé,et al.  ELECTRONEGATIVITY. IV. ORBITAL ELECTRONEGATIVITIES OF THE NEUTRAL ATOMS OF THE PERIODS THREE A AND FOUR A AND OF POSITIVE IONS OF PERIODS ONE AND TWO , 1963 .

[10]  A. Y. Meyer,et al.  Updating the Molecular–Mechanical Force Field for Organic Halides , 1980 .

[11]  H. H. Jaffé,et al.  Electronegativity. I. Orbital Electronegativity of Neutral Atoms , 1962 .

[12]  J. Pople,et al.  Molecular orbital theory of the electronic structure of organic compounds. III. Ab initio studies of charge distribution using a minimal Slater-type basis , 1970 .

[13]  A. Y. Meyer Molecular mechanics of organic halides: Part VII. Iodides , 1983 .

[14]  R. Seip,et al.  Conformational Analysis. XII. The Structure of Gaseous 1,3-Dichloropropane, (CH2Cl)2CH2, as Determined by Electron Diffraction and Compared with Molecular Mechanics Calculations. , 1976 .

[15]  A. Y. Meyer,et al.  Conformational analysis—CX : Applications of the molecular mechanics method to organic halides , 1975 .

[16]  Jenn‐Shing Chen,et al.  NMR Studies of Internal Rotation about the C‐C Bond in 1, 1, 2‐Trisubstituted Ethanes of the type XCH2‐CHX2 , 1976 .

[17]  Richard R. Ernst,et al.  Measurement and Control of Magnetic Field Homogeneity , 1968 .

[18]  A. Y. Meyer Molecular mechanics of organic halides. Part 6. Modified Del Re electrostatics and the force field , 1982 .

[19]  R. D. Topsom,et al.  Electron densities in simple organic molecules , 1982 .

[20]  Johann Gasteiger,et al.  Prediction of proton magnetic resonance shifts: The dependence on hydrogen charges obtained by iterative partial equalization of orbital electronegativity , 1981 .

[21]  N. L. Allinger,et al.  The conformational equilibrium of 1,3-dichloro-5-methylcyclohexane , 1981 .

[22]  R. J. Abraham,et al.  A molecular mechanics calculation of conformational energies and barrier heights in haloalkanes , 1981 .

[23]  G. Crowder On the conformational assignments of 1,3-dibromopropane and 1-bromo-3-methylpentane , 1977 .

[24]  A. B. Dempster Rotational isomer stabilities of 1,2-dichloropropane in the liquid and vapour phases from a reconsideration of available nuclear magnetic resonance and , 1974 .

[25]  Johann Gasteiger,et al.  Berechnung der Ladungsverteilung in konjugierten Systemen durch eine Quantifizierung des Mesomeriekonzeptes , 1985 .

[26]  J. J. Rasmussen,et al.  The Inductive Effect and Chemical Reactivity. V. Theoretical Dipole Moments of α,ι-Dichloroalkanes and α,ι-Dibromoalkanes1 , 1961 .

[27]  T. Giants,et al.  CNDO/2-predicted charge alternation , 1981 .

[28]  H. Eyring,et al.  The Inductive Effect and Chemical Reactivity. I. General Theory of the Inductive Effect and Application to Electric Dipole Moments of Haloalkanes , 1951 .

[29]  H. Berthod,et al.  Sur les rôles respectifs des électrons σ et π dans les propriétés des dérivés halogénés des molécules conjuguées. Application à l'étude de l'uracile et du fluorouracile , 1967 .

[30]  Johann Gasteiger,et al.  Electronegativity equalization: application and parametrization , 1985 .

[31]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[32]  N. L. Allinger,et al.  Conformational analysis—132: The effects of electrostatic interactions and solvation energies on conformational equilibria in dihalides and haloketonesTetrahedron 34, 627, 1978. , 1978 .

[33]  A. Y. Meyer Molecular mechanics of saturated organic halides: Part II. Fluorides , 1978 .

[34]  A. Y. Meyer Remarks on the molecular mechanical calculations of functionalized hydrocarbons , 1984 .

[35]  N. Zefirov,et al.  Parabolic relationship between free energies of comformational and isomerizational equilibria and the polarity of solvents , 1981 .

[36]  R. J. Abraham Medium effects in rotational isomerism. VI. Inclusion of dipole-dipole interactions in polar solvents , 1969 .

[37]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[38]  J. Wilmshurst Empirical Expression for Ionic Character and the Determination of s Hybridization from Nuclear Quadrupole Coupling Constants , 1959 .

[39]  R. J. Abraham,et al.  Rotational isomerism. Part XV. The solvent dependence of the conformational equilibria in trans-1,2- and trans-1,4-dihalogenocyclohexanes , 1973 .

[40]  R. Stōlevik,et al.  Conformational Analysis. V. The Molecular Structure, Torsional Oscillations, and Conformational Equilibria of Gaseous 1,3-Dibromopropane, (CH2Br)2CH2, as Determined by Electron Diffraction and Compared with Semi-empirical (Molecular Mechanics) Calculations. , 1974 .

[41]  L. Radom,et al.  Molecular orbital theory of the electronic structure of organic compounds. XVII. Internal rotation in 1,2-disubstituted ethanes , 1973 .

[42]  M. Saeed,et al.  Determination of gauche and trans proton vicinal coupling constant Jg and Jt for 1,2-dichloropropane as a model compound for 1,2-disubstituted and 1,2,3-trisubstituted profanes , 1977 .

[43]  M. G. Hutchings,et al.  Residual electronegativity - an empirical quantification of polar influences and its application to the proton affinity of amines , 1983 .

[44]  H. Finegold NMR Studies of Asymmetric Ethanic Rotators: 1,2‐Disubstituted Propanes , 1964 .

[45]  O. Hassel,et al.  Electron Diffraction Conformational Analyses of Trans-1,4-Dichloro- and Dibromocyclohexane. , 1959 .

[46]  R. J. Abraham,et al.  Medium effects on rotational equilibria. Part III. The theory for any number of dipoles and its application to 1,1,2-trichloroethane , 1967 .

[47]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[48]  Norman L. Allinger,et al.  Treatment of electrostatic effects within the molecular-mechanics method. 2 , 1983 .

[49]  Johann Gasteiger,et al.  A new treatment of chemical reactivity: Development of EROS, an expert system for reaction prediction and synthesis design , 1987 .

[50]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[51]  R. Stōlevik,et al.  Molecular mechanics calculations of conformational structures, energies and barrier heights in chloro-and bromoalkanes , 1983 .

[52]  A. Pullman,et al.  Sur le calcul des caractéristiques du squelette σ des molécules conjuguées , 1965 .

[53]  Lee Griffiths,et al.  Approaches to charge calculations in molecular mechanics , 1982 .

[54]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[55]  G. R. Hext,et al.  Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation , 1962 .

[56]  D. Jeremić,et al.  The solvent effect on the conformational equilibrium of 1,3-dichloro-5-methylcylclohexane , 1985 .

[57]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[58]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[59]  A. Y. Meyer Molecular mechanics of saturated organic halides: Part I. Monochlorides and non-geminal dichlorides , 1977 .

[60]  W. L. Jolly,et al.  Correlation of core electron binding energies with charge distributions for compounds of carbon, silicon, and germanium , 1974 .

[61]  M. A. Whitehead,et al.  Electronegativity. II. Bond and Orbital Electronegativities , 1963 .

[62]  John Mullay,et al.  Atomic and group electronegativities , 1984 .

[63]  A. S. Gilbert,et al.  Rotational isomerism in 1,3-dibromopropane and 1-bromo-3-methyl pentane , 1976 .

[64]  Johann Gasteiger,et al.  EROS A computer program for generating sequences of reactions , 1978 .

[65]  N. L. Allinger,et al.  The effect of electronegative atoms on the structures of hydrocarbons. ab initio calculations on molecules containing fluorine or (carbonyl) oxygen , 1985 .

[66]  H. Eyring,et al.  The Inductive Effect and Chemical Reactivity. II. Reactions of Halides with Sodium Atoms1 , 1952 .

[67]  A. Y. Meyer Molecular mechanics of organic halides. V. Conformational equilibria in solution , 1981 .

[68]  The vibrational spectra of trans-1,4-dichlorocyclohexane and trans-1,4-dibromocyclohexane , 1975 .

[69]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[70]  P. H. Smith,et al.  Intermolecular interactions in crystals of carboxylic acids , 1979 .

[71]  K. B. Wiberg Infrared intensities. The methyl halides. Effect of substituents on charge distributions , 1979 .

[72]  Hisaya Sato,et al.  Gas-phase NMR: Part I. Conformational energies of 1,2-disubstituted propanes and a comparison with MM2 and MNDO calculations , 1984 .

[73]  R. H. Boyd,et al.  Polar bonds and polarizability in conformational energy calculations: Application of a polarization model to alkyl halides , 1980 .

[74]  A. Y. Meyer,et al.  Molecular mechanics of organic halides: Part IV. Monobromides and non-geminal dibromides , 1981 .

[75]  O. Subbotin,et al.  Application of carbon-13 nuclear magnetic resonance spectrometry to the study of isomer and conformer ratios of dichlorocyclohexanes in their mixtures , 1976 .

[76]  R. Stōlevik,et al.  Conformation and molecular structure of 1,2-dichloropropane and 1,2-dibromopropane as determined by gas-phase electron diffraction and molecular-mechanics calculation , 1985 .

[77]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[78]  Norman L. Allinger,et al.  Treatment of electrostatic effects within the molecular-mechanics method. 1 , 1983 .