Collective Schedules: Scheduling Meets Computational Social Choice

When scheduling public works or events in a shared facility one needs to accommodate preferences of a population. We formalize this problem by introducing the notion of a collective schedule. We show how to extend fundamental tools from social choice theory---positional scoring rules, the Kemeny rule and the Condorcet principle---to collective scheduling. We study the computational complexity of finding collective schedules. We also experimentally demonstrate that optimal collective schedules can be found for instances with realistic sizes.

[1]  Y. Cabannes Participatory budgeting: a significant contribution to participatory democracy , 2004 .

[2]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[3]  Josep M. Colomer,et al.  Ramon Llull: from ‘Ars electionis’ to social choice theory , 2011, Social Choice and Welfare.

[4]  Kamesh Munagala,et al.  The Core of the Participatory Budgeting Problem , 2016, WINE.

[5]  Krzysztof Rzadca,et al.  Approximation Algorithms for the Multiorganization Scheduling Problem , 2011, IEEE Transactions on Parallel and Distributed Systems.

[6]  Berthold Vöcking Algorithmic Game Theory: Selfish Load Balancing , 2007 .

[7]  Toby Walsh,et al.  PrefLib: A Library for Preferences http://www.preflib.org , 2013, ADT.

[8]  Alessandro Agnetis,et al.  Scheduling Problems with Two Competing Agents , 2004, Oper. Res..

[9]  Christos H. Papadimitriou,et al.  Worst-case Equilibria , 1999, STACS.

[10]  Edith Hemaspaandra,et al.  Dodgson's Rule and Young's Rule , 2016, Handbook of Computational Social Choice.

[11]  Nisheeth K. Vishnoi,et al.  Ranking with Fairness Constraints , 2017, ICALP.

[12]  Alessandro Agnetis,et al.  Multiagent Scheduling - Models and Algorithms , 2014 .

[13]  H. Young,et al.  A Consistent Extension of Condorcet’s Election Principle , 1978 .

[14]  Ariel D. Procaccia,et al.  Preference Elicitation For Participatory Budgeting , 2017, AAAI.

[15]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[16]  M. Kendall A NEW MEASURE OF RANK CORRELATION , 1938 .

[17]  Ashish Goel,et al.  Knapsack Voting : Voting mechanisms for Participatory Budgeting , 2016 .

[18]  Piotr Faliszewski,et al.  Multiwinner Voting: A New Challenge for Social Choice Theory , 2017 .

[19]  Barry Nalebuff,et al.  An Introduction to Vote-Counting Schemes , 1995 .

[20]  Edith Elkind,et al.  Proportional Rankings , 2016, IJCAI.

[21]  Piotr Faliszewski,et al.  Finding a collective set of items: From proportional multirepresentation to group recommendation , 2014, Artif. Intell..

[22]  Joseph Y.-T. Leung,et al.  Minimizing Total Tardiness on One Machine is NP-Hard , 1990, Math. Oper. Res..

[23]  D. Atkin OR scheduling algorithms. , 2000, Anesthesiology.

[24]  Rolf Niedermeier,et al.  Weighted Tournament Solutions , 2016, Handbook of Computational Social Choice.

[25]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.