Simulation-Based Tests for Heteroskedasticity in Linear Regression Models: Some Further Results

Journal of Econometrics 122 Dufour, Khalaf, Bernard and GenestAs shown by the results of Dufour, Khalaf, Bernard and Genest (2004, Journal of Econometrics 122, 317-347), exact tests for heteroskedasticity in linear regression models can be obtained, by using Monte Carlo (MC) techniques, if either (i) it is assumed that the true form of the error distribution under homoskedasticity is known, or (ii) the null hypothesis specifies both homoskedasticity and the form of the error distribution. Non-parametric bootstrap tests of homoskedasticity alone are only asymptotically valid, but do not require specification of the error law. Since information about the precise form of the error distribution is not often available to applied workers, two questions merit attention. First, if the primary purpose is to check for heteroskedasticity, how sensitive are MC tests to incorrect assumptions/claims about the error distribution? Second, what can be said about the relative merits of MC tests and non-parametric bootstrap tests? Theoretical results relevant to these two questions are derived using asymptotic analysis and evidence is provided from simulation experiments.

[1]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[2]  A. Pagan,et al.  Testing for Heteroskedasticity , 1991 .

[3]  C. Orme,et al.  The Sensitivity of Some General Checks to Omitted Variables in the Linear Model , 1994 .

[4]  Maxwell L. King,et al.  Locally Best Invariant Tests of the Error Covariance Matrix of the Linear Regression Model , 1985 .

[5]  Karl W Broman,et al.  Simulation-based P values: response to North et al. , 2003, American journal of human genetics.

[6]  K. Pearson On the χ 2 Test of Goodness of Fit , 1922 .

[7]  R. Beran Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements , 1988 .

[8]  J. Machado,et al.  Glejser’s test revisited , 2000 .

[9]  J. Horowitz Bootstrap-based critical values for the information matrix test , 1994 .

[10]  D. Darling,et al.  A Test of Goodness of Fit , 1954 .

[11]  H. Glejser A New Test for Heteroskedasticity , 1969 .

[12]  Jean-Marie Dufour,et al.  Simulation�?Based Finite Sample Normality Tests in Linear Regressions , 1998 .

[13]  Jean-Marie Dufour,et al.  Simulation-based finite-sample tests for heteroskedasticity and ARCH effects , 2004 .

[14]  L. Godfrey,et al.  Controlling the Overall Significance Level of a Battery of Least Squares Diagnostic Tests , 2005 .

[15]  Leslie Godfrey,et al.  Some results on the Glejser and Koenker tests for heteroskedasticity , 1996 .

[16]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[17]  David L. Edgerton Should stochastic or non-stochastic exogenous variables be used in Monte Carlo experiments? , 1996 .

[18]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[19]  C. Mallows A Note on Asymptotic Joint Normality , 1972 .

[20]  Jean-Marie Dufour,et al.  Exact Tests for Contemporaneous Correlation of Disturbances in Seemingly Unrelated Regressions * , 2022 .

[21]  Robustifying Glejser test of heteroskedasticity , 2000 .

[22]  J. Szroeter A Class of Parametric Tests for Heteroscedasticity in Linear Econometric Models X1-ab , 1978 .

[23]  W. G. Cochran The $\chi^2$ Test of Goodness of Fit , 1952 .

[24]  Eduardo Fe,et al.  On the sensitivity of Kernel-based Conditional Moment Tests to Unconsidered Local Alternatives , 2006 .

[25]  J. Fox Bootstrapping Regression Models , 2002 .

[26]  S. Goldfeld,et al.  Some Tests for Homoscedasticity , 1965 .

[27]  T. Breurch,et al.  A simple test for heteroscedasticity and random coefficient variation (econometrica vol 47 , 1979 .

[28]  Leslie Godfrey Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches , 1988 .

[29]  Roger Koenker,et al.  A note on studentizing a test for heteroscedasticity , 1981 .

[30]  Leslie Godfrey,et al.  The robustness, reliabiligy and power of heteroskedasticity tests , 1999 .