5. Filtration Mechanisms

[1]  K. Okuyama,et al.  Filtration efficiency of a fibrous filter for nanoparticles , 2006 .

[2]  Fariborz Haghighat,et al.  Performance of mechanical filters and respirators for capturing nanoparticles--limitations and future direction. , 2010, Industrial health.

[3]  D. Pittet,et al.  Environmental controls in operating theatres. , 2002, The Journal of hospital infection.

[4]  Bandaru V. Ramarao,et al.  Calculation of single fiber efficiencies for interception and impaction with superposed brownian motion , 1994 .

[5]  Jörg Meyer,et al.  Filtration Efficiency of Aerosol Particles Below 20 Nanometers , 2005 .

[6]  K. W. Lee,et al.  Theoretical Study of Aerosol Filtration by Fibrous Filters , 1982 .

[7]  A. Renoux,et al.  PENETRATION AND PRESSURE DROP OF A HEPA FILTER DURING LOADING WITH SUBMICRON LIQUID PARTICLES , 1992 .

[8]  J.I.T. Stenhouse,et al.  The effect of particle size, charge, and composition on the loading characteristics of an electrically active fibrous filter material , 1997 .

[9]  Y. Otani,et al.  Effect of Charging State of Particles on Electret Filtration , 1987 .

[10]  C. Clement,et al.  A numerical model of fibrous filters containing deposit , 2009 .

[11]  R. Brown,et al.  MEASUREMENTS OF THE FILTRATION EFFICIENCY OF NUISANCE DUST RESPIRATORS AGAINST RESPIRABLE AND NON-RESPIRABLE AEROSOLS , 1988 .

[12]  Leon Gradoń,et al.  Lattice-Boltzmann approach for description of the structure of deposited particulate matter in fibrous filters , 2003 .

[13]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[14]  W. Tanthapanichakoon,et al.  Correlation for the efficiency enhancement factor of a single electret fiber , 2006 .

[15]  Y. Otani,et al.  Initial Collection Performance of Resin Wool Filters and Estimation of Charge Density , 2005 .

[16]  D. Wake,et al.  EFFECT OF INDUSTRIAL AEROSOLS ON THE PERFORMANCE OF ELECTRICALLY CHARGED FILTER MATERIAL , 1988 .

[17]  J. G. Gillen,et al.  Aerosol Collection Efficiency of a Graded Metal-Fiber Filter at High Airflow Velocity (10 m s–1) , 2011 .

[18]  Q. Song,et al.  Experimental investigation on the particle capture by a single fiber using microscopic image technique , 2006 .

[19]  Chun Shun Cheung,et al.  Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers , 2000 .

[20]  C. Wang,et al.  Electrostatic forces in fibrous filters—a review , 2001 .

[21]  Behnam Pourdeyhimi,et al.  A realistic approach for modeling permeability of fibrous media : 3-D imaging coupled with CFD simulation , 2008 .

[22]  Stokes flow in periodic systems of parallel cylinders with porous permeable shells , 2006 .

[23]  Leon Gradoń,et al.  Deposition and Filtration of Nanoparticles in the Composites of Nano- and Microsized Fibers , 2008 .

[24]  A. Podǵorski Estimation of the upper limit of aerosol nanoparticles penetration through inhomogeneous fibrous filters , 2009 .

[25]  David Y. H. Pui,et al.  Experimental study of filtration efficiency of nanoparticles below 20 nm at elevated temperatures , 2008 .

[26]  Benjamin Y. H. Liu,et al.  Experimental Study of Electrostatic Capture Mechanisms in Commercial Electret Filters , 1998 .

[27]  Ziqing Zhuang,et al.  Respiratory protection against bioaerosols: Literature review and research needs , 2004, American Journal of Infection Control.

[28]  A. Kirsch,et al.  The Fluid Flow in a System of Parallel Cylinders Perpendicular to the Flow Direction at Small Reynolds Numbers , 1967 .

[29]  Yifang Zhu,et al.  In-cabin commuter exposure to ultrafine particles on Los Angeles freeways. , 2007, Environmental science & technology.

[30]  J. Vendel,et al.  Clogging of fibrous filters by solid aerosol particles Experimental and modelling study , 2001 .

[31]  Z. Gerald Liu,et al.  Pressure drop and interception efficiency of multifiber filters , 1997 .

[32]  H. Vahedi Tafreshi,et al.  Modeling particle filtration in disordered 2-D domains: A comparison with cell models , 2010 .

[33]  A. Podǵorski,et al.  Novel Formulae for Deposition Efficiency of Electrically Neutral, Submicron Aerosol Particles in Bipolarly Charged Fibrous Filters Derived Using Brownian Dynamics Approach , 2008 .

[34]  K Leder,et al.  Respiratory infections during air travel , 2005, Internal medicine journal.

[35]  N. Fuchs,et al.  Studies on Fibrous Aerosol Filters—I. Calculation of Diffusional Deposition of Aerosols in Fibrous Filters , 1966 .

[36]  L. Curtis,et al.  Prevention of hospital-acquired infections: review of non-pharmacological interventions , 2008, Journal of Hospital Infection.

[37]  Hwa-Chi Wang,et al.  Filtration efficiency of nanometer-size aerosol particles , 1991 .

[38]  Performance of Electrically Augmented Fibrous Filters, Measured with Monodisperse Aerosols , 2003 .

[39]  Y. Cao,et al.  Numerical Model for particle deposition and loading in electret filter with rectangular split-type fibers , 2005 .

[40]  Ki-Joon Jeon,et al.  A Simulation Study on the Collection of Submicron Particles in a Unipolar Charged Fiber , 2002 .

[41]  Ying Hui Cao,et al.  Numerical Study of an Electret Filter Composed of an Array of Staggered Parallel Rectangular Split-Type Fibers , 2004 .

[42]  R. Ocone,et al.  The effect of the flow field recalculation on fibrous filter loading: a numerical simulation , 2003 .

[43]  R. Maus,et al.  Measurements of Single Fibre Efficiencies at Critical Values of the Stokes Number , 1999 .

[44]  Wladyslaw W. Szymanski,et al.  Penetration of Monodisperse, Singly Charged Nanoparticles through Polydisperse Fibrous Filters , 2011 .

[45]  Denis Bemer,et al.  Discussion about the thermal rebound of nanoparticles , 2011 .

[46]  J. Vendel,et al.  Modelling pressure drop in hepa filters during dynamic filtration , 1999 .

[47]  John Happel,et al.  Viscous flow relative to arrays of cylinders , 1959 .

[48]  Mustapha Hellou,et al.  Stokes flow through microstructural model of fibrous media , 2004 .

[49]  B. Asgharian,et al.  The Filtration of Fibrous Aerosols , 2002 .

[50]  R. Braddock,et al.  Filter efficiency as a function of nanoparticle velocity and shape , 2008 .

[51]  Jörg Meyer,et al.  Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce , 2010 .

[52]  Friedrich Löffler,et al.  Realistic modelling of the behaviour of fibrous filters through consideration of filter structure , 1994 .

[53]  J. Beeckmans,et al.  Single fibre capture efficiencies of aerosol particles in real and model filters in the inertial-interceptive domain , 1975 .

[54]  Single-Fiber Interception Efficiency for Elliptical Fibers , 2008 .

[55]  A. A. Kirsh,et al.  Efficiency of inertial deposition of aerosol particles in fibrous filters with regard to particle rebounds from fibers , 2011 .

[56]  D. Pui,et al.  Laboratory and on-road evaluations of cabin air filters using number and surface area concentration monitors. , 2008, Environmental science & technology.

[57]  Behnam Pourdeyhimi,et al.  A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures , 2007 .

[58]  T. Seto,et al.  Influence of Filter Inhomogeneity on Air Filtration of Nanoparticles , 2011 .

[59]  Shuiqing Li,et al.  Discrete element simulation of micro-particle deposition on a cylindrical fiber in an array , 2007 .

[60]  V. A. Kirsh (Kirsch) Diffusional deposition of nanoparticles in a 3D model fiber filter , 2011 .

[61]  J. Sublett,et al.  Curr Allergy Asthma Rep (2011) 11:395–402 DOI 10.1007/s11882-011-0208-5 Effectiveness of Air Filters and Air Cleaners in Allergic Respiratory Diseases: A Review of the Recent Literature , 2011 .

[62]  T. Sandström,et al.  Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects. , 1999, Occupational and environmental medicine.

[63]  Behnam Pourdeyhimi,et al.  A case study of simulating submicron aerosol filtration via lightweight spun-bonded filter media , 2006 .

[64]  D. Pui,et al.  Modeling of filtration efficiency of nanoparticles in standard filter media , 2006 .

[65]  Gerhard Kasper,et al.  The collection efficiency of a particle-loaded single filter fiber☆ , 2009 .

[66]  Chikao Kanaoka,et al.  Stochastic simulation of the agglomerative deposition process of aerosol particles on an electret fiber , 2001 .

[67]  Zhenqiang Xu,et al.  Bioaerosol Science, Technology, and Engineering: Past, Present, and Future , 2011 .

[68]  D. Pui,et al.  A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometers , 2006 .

[69]  S. Kuwabara,et al.  The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers , 1959 .

[70]  D. Pui,et al.  Experimental study of nanoparticles penetration through commercial filter media , 2006 .

[71]  K. W. Lee,et al.  Analytic Solutions to Diffusional Deposition of Polydisperse Aerosols in Fibrous Filters , 2002 .

[72]  Zhijia Huang,et al.  Retraction: Effects of the Operating Conditions and Geometry Parameter on the Filtration Performance of the Fibrous Filter , 2009 .

[73]  D. Pui,et al.  Filtration of aerosol particles by elliptical fibers: a numerical study , 2009 .

[74]  H. S. Park,et al.  Experimental study of filter clogging with monodisperse PSL particles , 2006 .

[76]  P. D. Gardner,et al.  N95 and P100 Respirator Filter Efficiency Under High Constant and Cyclic Flow , 2008, Journal of occupational and environmental hygiene.