Observational constraints on an interacting dark energy model

We use observations of cosmic microwave background (CMB) anisotropies, supernova luminosities and the baryon acoustic oscillation signal in the galaxy distribution to constrain the cosmological parameters in a simple interacting dark energy model with a time-varying equation of state. Using a Monte Carlo Markov Chain technique, we determine the posterior likelihoods. Constraints from the individual data sets are weak, but the combination of the three data sets confines the interaction constant Γ to be less than 23 per cent of the expansion rate of the Universe H0; at 95 per cent confidence level −0.23 < Γ/H0 < +0.15. The CMB acoustic peaks can be well fitted even if the interaction rate is much larger, but this requires a larger or smaller (depending on the sign of interaction) matter density today than in the non-interacting model. Due to this degeneracy between the matter density and the interaction rate, the only observable effect on the CMB is a larger or smaller integrated Sachs–Wolfe effect. While supernova or baryon acoustic oscillation data alone do not set any direct constraints on the interaction, they exclude the models with very large matter density, and hence indirectly constrain the interaction rate when jointly analysed with the CMB data. To enable the analysis described in this paper, we present, in a companion paper, a new systematic analysis of the early radiation era solution to find the adiabatic initial conditions for the Boltzmann integration.

[1]  E. Linder Exploring the expansion history of the universe. , 2002, Physical review letters.

[2]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[3]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[4]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[5]  Bin Wang,et al.  Effects of the interaction between dark energy and dark matter on cosmological parameters , 2008, 0801.4233.

[6]  Cosmological coincidence problem in interacting dark energy models , 2006, gr-qc/0610080.

[7]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[8]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[9]  P. Peebles,et al.  Interacting Dark Matter and Dark Energy , 2003, astro-ph/0307316.

[10]  R. Maartens,et al.  The growth of structure in interacting dark energy models , 2009, 0905.0492.

[11]  C. Quercellini,et al.  Late universe dynamics with scale-independent linear couplings in the dark sector , 2008, 0803.1976.

[12]  J. Hamann,et al.  Observational bounds on the cosmic radiation density , 2007, 0705.0440.

[13]  R. Nichol,et al.  Cosmological constraints from the SDSS luminous red galaxies , 2006, astro-ph/0608632.

[14]  C. Wetterich,et al.  Gauge-invariant initial conditions and early time perturbations in quintessence universes , 2003, astro-ph/0304212.

[15]  B. Schaefer The integrated Sachs–Wolfe effect in cosmologies with coupled dark matter and dark energy , 2008, 0803.2239.

[16]  R. Maartens,et al.  Dynamics of interacting dark energy , 2008, 0812.1827.

[17]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[18]  S. Pereira,et al.  Can dark matter decay in dark energy , 2008, 0811.0099.

[19]  Roy Maartens,et al.  Velocities as a probe of dark sector interactions , 2009, 0907.2126.

[20]  S. Chongchitnan Cosmological perturbations in models of coupled dark energy , 2008, 0810.5411.

[21]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[22]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[23]  Renyue Cen,et al.  Decaying Cold Dark Matter Model and Small-Scale Power , 2000, astro-ph/0005206.

[24]  N. Ohta,et al.  Probing the coupling between dark components of the universe , 2007, astro-ph/0702015.

[25]  M. Baldi Simulations of structure formation in interacting dark energy cosmologies , 2009, 0906.5353.

[26]  Growth of perturbations in dark matter coupled with quintessence , 2005, astro-ph/0504571.

[27]  Mark Trodden,et al.  Adiabatic instability in coupled dark energy/dark matter models , 2007, 0709.1128.

[28]  Scaling solutions in general nonminimal coupling theories , 1999, astro-ph/9904120.

[29]  Cosmic Microwave Background as a Gravity Probe , 2003 .

[30]  Y. Jing,et al.  Effects of dark sectors' mutual interaction on the growth of structures , 2009, 0902.0660.

[31]  Large scale curvature and entropy perturbations for multiple interacting fluids , 2002, astro-ph/0211602.

[32]  Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy , 2009, 0902.2711.

[33]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[34]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[35]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[36]  Interacting Quintessence , 2001, astro-ph/0105479.

[37]  Matter density perturbations in interacting quintessence models , 2006, astro-ph/0607604.

[38]  U. California,et al.  Gravitational lensing constraints on dynamical and coupled dark energy , 2008, 0803.1640.

[39]  M. Trodden,et al.  Constraining Interactions in Cosmology's Dark Sector , 2008, 0808.1105.

[40]  Edwin Sirko,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2007 .

[41]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[42]  Observational constraints on interacting quintessence models , 2005, astro-ph/0503242.

[43]  Limits on coupling between dark components , 2007, astro-ph/0703303.

[44]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[45]  M. Chevallier,et al.  ACCELERATING UNIVERSES WITH SCALING DARK MATTER , 2000, gr-qc/0009008.

[46]  M. Quartin,et al.  Dark interactions and cosmological fine-tuning , 2008, 0802.0546.

[47]  D. Pavón,et al.  Interacting quintessence solution to the coincidence problem , 2003, astro-ph/0303145.

[48]  Roy Maartens,et al.  Dynamics of dark energy with a coupling to dark matter , 2008, 0801.1565.

[49]  C. Baccigalupi,et al.  Coupled and extended quintessence: Theoretical differences and structure formation , 2008, 0802.1086.

[50]  A. Berera,et al.  On the large-scale instability in interacting dark energy and dark matter fluids , 2009, 0901.3272.

[51]  The Cosmon model for an asymptotically vanishing time dependent cosmological 'constant' , 1994, hep-th/9408025.

[52]  L. Colombo,et al.  DARK MATTER–DARK ENERGY COUPLING BIASING PARAMETER ESTIMATES FROM COSMIC MICROWAVE BACKGROUND DATA , 2008, 0804.0285.

[53]  Bin Wang,et al.  Stability of the curvature perturbation in dark sectors' mutual interacting models , 2008, 0807.3471.

[54]  Limits of quintessence. , 2005, Physical review letters.

[55]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[56]  Interactions in scalar field cosmology , 1999, astro-ph/9908224.

[57]  M. B. Gavela,et al.  Dark coupling , 2009, 0901.1611.