Influence of TEMPO-oxidised cellulose nanofibrils on the properties of filler-containing papers

[1]  Manabu Yamamoto,et al.  Fundamental properties of handsheets containing TEMPO-oxidized pulp in various weight ratios , 2016 .

[2]  Jong Myoung Won,et al.  Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties. , 2016, Carbohydrate polymers.

[3]  I. González,et al.  Suitability of wheat straw semichemical pulp for the fabrication of lignocellulosic nanofibres and their application to papermaking slurries , 2016, Cellulose.

[4]  G. Chinga-Carrasco,et al.  On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. , 2015, Micron.

[5]  H. Orelma,et al.  TEMPO oxidized cellulose thin films analysed by QCM-D and AFM , 2015, Cellulose.

[6]  P. Ferreira,et al.  Surface properties of distinct nanofibrillated celluloses assessed by inverse gas chromatography , 2014 .

[7]  I. González,et al.  From paper to nanopaper: evolution of mechanical and physical properties , 2014, Cellulose.

[8]  P. Ferreira,et al.  Increase of the filler content in papermaking by using a silica-coated PCC filler , 2014 .

[9]  H. Liimatainen,et al.  The role of hornification in the disintegration behaviour of TEMPO-oxidized bleached hardwood fibres in a high-shear homogenizer , 2014, Cellulose.

[10]  Kristin Syverud,et al.  Effects of bagasse microfibrillated cellulose and cationic polyacrylamide on key properties of bagasse paper. , 2014, Carbohydrate polymers.

[11]  Y. Davoudpour,et al.  Production and modification of nanofibrillated cellulose using various mechanical processes: a review. , 2014, Carbohydrate polymers.

[12]  Janne Laine,et al.  Flocculation and retention of fillers with nanocelluloses , 2014 .

[13]  Kristin Syverud,et al.  Cellulose nanofibrils: Challenges and possibilities as a paper additive or coating material – A review , 2014 .

[14]  Asko Sneck,et al.  Characterization of fibrillated celluloses. A short review and evaluation of characteristics with a combination of methods , 2014 .

[15]  Martin A. Hubbe,et al.  Prospects for Maintaining Strength of Paper and Paperboard Products While Using Less Forest Resources: A Review , 2013 .

[16]  H. Liimatainen,et al.  Effect of tempo and periodate-chlorite oxidized nanofibrils on ground calcium carbonate flocculation and retention in sheet forming and on the physical properties of sheets , 2013, Cellulose.

[17]  Inkjet-printed silver nanoparticles on nano-engineered cellulose films for electrically conducting structures and organic transistors: concept and challenges , 2012, Journal of Nanoparticle Research.

[18]  Julien Bras,et al.  Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review. , 2012, Carbohydrate polymers.

[19]  Manel Alcalà,et al.  Nanofibrillated cellulose as paper additive in eucalyptus pulps , 2012 .

[20]  Øyvind Eriksen,et al.  The effect of MFC on the pressability and paper properties of TMP and GCC based sheets , 2012 .

[21]  T. Hjelt,et al.  Smooth and flexible filler-nanocellulose composite structure for printed electronics applications , 2012, Cellulose.

[22]  Dieter Klemm,et al.  Nanocelluloses: A New Family of Nature-Based Materials , 2011 .

[23]  S. Boufi,et al.  Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content , 2011 .

[24]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[25]  O. Figovsky,et al.  Structure and properties of nanoparticles used in paper compositions , 2010 .

[26]  Janne Laine,et al.  Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength , 2010 .

[27]  Kentaro Abe,et al.  Review: current international research into cellulose nanofibres and nanocomposites , 2010, Journal of Materials Science.

[28]  P. Ferreira,et al.  A New Approach for the Modification of Paper Surface Properties Using Polyoxometalates , 2010, Materials.

[29]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[30]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[31]  Kristin Syverud,et al.  Strength and barrier properties of MFC films , 2009 .

[32]  Marielle Henriksson,et al.  Cellulose nanopaper structures of high toughness. , 2008, Biomacromolecules.

[33]  C. Negro,et al.  Evaluation of flocs resistance and reflocculation capacity using the LDS technique , 2008 .

[34]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[35]  Akira Isogai,et al.  Wet Strength Improvement of TEMPO-Oxidized Cellulose Sheets Prepared with Cationic Polymers , 2007 .

[36]  Akira Isogai,et al.  Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation , 2006 .

[37]  Akira Isogai,et al.  TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. , 2004, Biomacromolecules.

[38]  R. Turcotte,et al.  The challenges of increasing filler in fine paper , 2004 .