Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems

Abstract We first study the problem of chaotic behaviour in time-perturbed discontinuous systems whose unperturbed part has a piecewise C 1 homoclinic solution transversally crossing the discontinuity manifolds. We show that if a certain Melnikov function has a simple zero at some point, then the system has solutions that behave chaotically. The Melnikov function is explicitly constructed for two-dimensional systems and extends the usual Melnikov function for the smooth case. In the second part, we extend these results to sliding homoclinic bifurcations. We also mention some possibilities for further research.

[1]  Piotr Kowalczyk,et al.  A codimension-two scenario of sliding solutions in grazing–sliding bifurcations , 2006 .

[2]  Jaume Llibre,et al.  Horseshoes Near homoclinic orbits for Piecewise Linear Differential Systems in R3 , 2007, Int. J. Bifurc. Chaos.

[3]  R. Leine,et al.  Bifurcations in Nonlinear Discontinuous Systems , 2000 .

[4]  Peter Kukučka,et al.  Melnikov method for discontinuous planar systems , 2007 .

[5]  Jan Awrejcewicz,et al.  Modeling, chaotic behavior, and control of dissipation properties of hysteretic systems , 2006 .

[6]  Albert C. J. Luo,et al.  A theory for flow switchability in discontinuous dynamical systems , 2008 .

[7]  Michal Fečkan,et al.  Bifurcation and chaos near sliding homoclinics , 2010 .

[8]  Michal Fečkan,et al.  Homoclinic Trajectories in Discontinuous Systems , 2008 .

[9]  J. Gruendler Homoclinic Solutions for Autonomous Ordinary Differential Equations with Nonautonomous Perturbations , 1995 .

[10]  V. V. Zhikov,et al.  Almost Periodic Functions and Differential Equations , 1983 .

[11]  D. Stoffer Transversal homoclinic points and hyperbolic sets for non-autonomous maps I , 1988 .

[12]  Michal Feckan,et al.  On the Chaotic Behaviour of Discontinuous Systems , 2011 .

[13]  Pieter Collins,et al.  Chaotic Dynamics in Hybrid Systems , 2008 .

[14]  Michal Feckan,et al.  Chaos in nonautonomous Differential Inclusions , 2005, Int. J. Bifurc. Chaos.

[15]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[16]  Michal Fečkan,et al.  An example of chaotic behaviour in presence of a sliding homoclinic orbit , 2010 .

[17]  D. Stoffer,et al.  Chaos in almost periodic systems , 1989 .

[18]  Haiwu Rong,et al.  Melnikov's method for a general nonlinear vibro-impact oscillator , 2009 .

[19]  M. Irwin,et al.  Smooth Dynamical Systems , 2001 .

[20]  Michal Fečkan,et al.  Bifurcations of planar sliding homoclinics , 2006 .

[21]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[22]  Bashir Ahmad,et al.  Generalized quasilinearization method for a second order three point boundary-value problem with nonlinear boundary conditions , 2002 .

[23]  L. Chua,et al.  The double scroll family , 1986 .

[24]  Flaviano Battelli,et al.  Exponential dichotomies, heteroclinic orbits, and Melnikov functions☆ , 1990 .

[25]  Some remarks on the Melnikov function , 2002 .

[26]  Celso Grebogi,et al.  Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Leon O. Chua,et al.  The double scroll , 1985 .

[28]  Steven W. Shaw,et al.  The transition to chaos in a simple mechanical system , 1989 .

[29]  Fabio Dercole,et al.  Numerical sliding bifurcation analysis: an application to a relay control system , 2003 .

[30]  S. Wiggins Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence , 1999 .

[31]  A. Kovaleva,et al.  The Melnikov criterion of instability for random rocking dynamics of a rigid block with an attached secondary structure , 2010 .

[32]  Zhengdong Du,et al.  Melnikov method for homoclinic bifurcation in nonlinear impact oscillators , 2005 .

[33]  STEFANO LENCI,et al.  Heteroclinic bifurcations and Optimal Control in the Nonlinear Rocking Dynamics of Generic and Slender Rigid Blocks , 2005, Int. J. Bifurc. Chaos.

[34]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[35]  K. Meyer,et al.  MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .

[36]  Alexander N. Pisarchik,et al.  Homoclinic orbits in a piecewise linear Rössler-like circuit , 2005 .

[37]  Bernold Fiedler,et al.  Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .

[38]  M. Kunze,et al.  Non-Smooth Dynamical Systems: An Overview , 2001 .

[39]  Michal Feckan,et al.  Chaos arising near a topologically transversal homoclinic set , 2002 .