Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems
暂无分享,去创建一个
[1] Piotr Kowalczyk,et al. A codimension-two scenario of sliding solutions in grazing–sliding bifurcations , 2006 .
[2] Jaume Llibre,et al. Horseshoes Near homoclinic orbits for Piecewise Linear Differential Systems in R3 , 2007, Int. J. Bifurc. Chaos.
[3] R. Leine,et al. Bifurcations in Nonlinear Discontinuous Systems , 2000 .
[4] Peter Kukučka,et al. Melnikov method for discontinuous planar systems , 2007 .
[5] Jan Awrejcewicz,et al. Modeling, chaotic behavior, and control of dissipation properties of hysteretic systems , 2006 .
[6] Albert C. J. Luo,et al. A theory for flow switchability in discontinuous dynamical systems , 2008 .
[7] Michal Fečkan,et al. Bifurcation and chaos near sliding homoclinics , 2010 .
[8] Michal Fečkan,et al. Homoclinic Trajectories in Discontinuous Systems , 2008 .
[9] J. Gruendler. Homoclinic Solutions for Autonomous Ordinary Differential Equations with Nonautonomous Perturbations , 1995 .
[10] V. V. Zhikov,et al. Almost Periodic Functions and Differential Equations , 1983 .
[11] D. Stoffer. Transversal homoclinic points and hyperbolic sets for non-autonomous maps I , 1988 .
[12] Michal Feckan,et al. On the Chaotic Behaviour of Discontinuous Systems , 2011 .
[13] Pieter Collins,et al. Chaotic Dynamics in Hybrid Systems , 2008 .
[14] Michal Feckan,et al. Chaos in nonautonomous Differential Inclusions , 2005, Int. J. Bifurc. Chaos.
[15] Yuri A. Kuznetsov,et al. One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.
[16] Michal Fečkan,et al. An example of chaotic behaviour in presence of a sliding homoclinic orbit , 2010 .
[17] D. Stoffer,et al. Chaos in almost periodic systems , 1989 .
[18] Haiwu Rong,et al. Melnikov's method for a general nonlinear vibro-impact oscillator , 2009 .
[19] M. Irwin,et al. Smooth Dynamical Systems , 2001 .
[20] Michal Fečkan,et al. Bifurcations of planar sliding homoclinics , 2006 .
[21] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[22] Bashir Ahmad,et al. Generalized quasilinearization method for a second order three point boundary-value problem with nonlinear boundary conditions , 2002 .
[23] L. Chua,et al. The double scroll family , 1986 .
[24] Flaviano Battelli,et al. Exponential dichotomies, heteroclinic orbits, and Melnikov functions☆ , 1990 .
[25] Some remarks on the Melnikov function , 2002 .
[26] Celso Grebogi,et al. Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[27] Leon O. Chua,et al. The double scroll , 1985 .
[28] Steven W. Shaw,et al. The transition to chaos in a simple mechanical system , 1989 .
[29] Fabio Dercole,et al. Numerical sliding bifurcation analysis: an application to a relay control system , 2003 .
[30] S. Wiggins. Chaos in the dynamics generated by sequences of maps, with applications to chaotic advection in flows with aperiodic time dependence , 1999 .
[31] A. Kovaleva,et al. The Melnikov criterion of instability for random rocking dynamics of a rigid block with an attached secondary structure , 2010 .
[32] Zhengdong Du,et al. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators , 2005 .
[33] STEFANO LENCI,et al. Heteroclinic bifurcations and Optimal Control in the Nonlinear Rocking Dynamics of Generic and Slender Rigid Blocks , 2005, Int. J. Bifurc. Chaos.
[34] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[35] K. Meyer,et al. MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS , 1989 .
[36] Alexander N. Pisarchik,et al. Homoclinic orbits in a piecewise linear Rössler-like circuit , 2005 .
[37] Bernold Fiedler,et al. Ergodic theory, analysis, and efficient simulation of dynamical systems , 2001 .
[38] M. Kunze,et al. Non-Smooth Dynamical Systems: An Overview , 2001 .
[39] Michal Feckan,et al. Chaos arising near a topologically transversal homoclinic set , 2002 .