Iron oxide encapsulated in nitrogen-rich carbon enabling high-performance lithium-ion capacitor

[1]  Xuefeng Guo,et al.  Iron oxide encapsulated in nitrogen-doped carbon as high energy anode material for asymmetric supercapacitors , 2019, Journal of Power Sources.

[2]  Jiujun Zhang,et al.  Hybrid energy storage devices: Advanced electrode materials and matching principles , 2019, Energy Storage Materials.

[3]  Xuefeng Guo,et al.  Ternary Heterostructural Pt/CNx/Ni as a Supercatalyst for Oxygen Reduction , 2019, iScience.

[4]  Yuhong Jin,et al.  Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance , 2018, Applied Surface Science.

[5]  Lei Wang,et al.  High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode , 2018, Energy Storage Materials.

[6]  Wenbin Hu,et al.  Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. , 2018, Chemical reviews.

[7]  Pengfei Zhou,et al.  Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries , 2018 .

[8]  Chengyang Wang,et al.  N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries. , 2018, ACS applied materials & interfaces.

[9]  R. Holze,et al.  Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage , 2018 .

[10]  Qiangfeng Xiao,et al.  Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode , 2018, Science China Materials.

[11]  Hongli Zhu,et al.  Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition , 2018, Science China Materials.

[12]  Dongliang Chao,et al.  Nonaqueous Hybrid Lithium‐Ion and Sodium‐Ion Capacitors , 2017, Advanced materials.

[13]  Songping Wu,et al.  Remarkable high-temperature Li-storage performance of few-layer graphene-anchored Fe3O4 nanocomposites as an anode , 2017 .

[14]  Yating Ma,et al.  Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe 3 O 4 nano-flower architecture with high lithium storage capacity and excellent rate capability , 2017 .

[15]  Jun Liu,et al.  Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. , 2017, ACS nano.

[16]  L. Mai,et al.  Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors , 2017, Nature Communications.

[17]  Dong-weon Lee,et al.  Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor , 2017 .

[18]  Zhen Zhou,et al.  Recent Breakthroughs in Supercapacitors Boosted by Nitrogen‐Rich Porous Carbon Materials , 2017, Advanced science.

[19]  Syed Nasimul Alam,et al.  Synthesis of Graphene Oxide (GO) by Modified Hummers Method and Its Thermal Reduction to Obtain Reduced Graphene Oxide (rGO) , 2017 .

[20]  Jie Wang,et al.  An interlayer nanostructure of rGO/Sn2Fe-NRs array/rGO with high capacity for lithium ion battery anodes , 2016, Science China Materials.

[21]  W. Mai,et al.  Atomic Layer Deposition of Amorphous TiO2 on Carbon Nanotube Networks and Their Superior Li and Na Ion Storage Properties , 2016 .

[22]  Z. Shen,et al.  Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays. , 2016, ACS nano.

[23]  Youlong Xu,et al.  Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors , 2016 .

[24]  A. Yu,et al.  Advanced Li-Ion Hybrid Supercapacitors Based on 3D Graphene-Foam Composites. , 2016, ACS applied materials & interfaces.

[25]  Jesse S. Ko,et al.  Mesoporous LixMn2O4 Thin Film Cathodes for Lithium-Ion Pseudocapacitors. , 2016, ACS nano.

[26]  Y. Gogotsi,et al.  Ethanol reduced molybdenum trioxide for Li-ion capacitors , 2016 .

[27]  G. Diao,et al.  Nitrogen-doped Mesoporous Carbon-encapsulation Urchin-like Fe3O4 as Anode Materials for High Performance Li-ions Batteries , 2016 .

[28]  Eugene Shi Guang Choo,et al.  Designed Construction of a Graphene and Iron Oxide Freestanding Electrode with Enhanced Flexible Energy-Storage Performance. , 2016, ACS applied materials & interfaces.

[29]  Feng Li,et al.  Armoring Graphene Cathodes for High‐Rate and Long‐Life Lithium Ion Supercapacitors , 2016 .

[30]  Xiaohong Wang,et al.  Hollow Nitrogen-doped Fe3O4/Carbon Nanocages with Hierarchical Porosities as Anode Materials for Lithium-ion Batteries , 2015 .

[31]  H. Xia,et al.  Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[32]  Jitong Wang,et al.  Free-Standing T-Nb₂O₅/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. , 2015, ACS nano.

[33]  Kyoung G. Lee,et al.  Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[34]  S. Giordani,et al.  Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. , 2015, Chemical Society reviews.

[35]  Xizhang Wang,et al.  Hydrophilic Hierarchical Nitrogen‐Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance , 2015, Advanced materials.

[36]  X. Qin,et al.  Fe3O4 nanoparticles encapsulated in electrospun porous carbon fibers with a compact shell as high-performance anode for lithium ion batteries , 2015 .

[37]  Wen‐Sheng Dong,et al.  PtAu alloy nanoparticles supported on thermally expanded graphene oxide as a catalyst for the selective oxidation of glycerol , 2015 .

[38]  S. Baik,et al.  Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded graphene composites by simultaneous modulation of electronic and thermal carrier transport , 2015 .

[39]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[40]  Yun-Sung Lee,et al.  Insertion-type electrodes for nonaqueous Li-ion capacitors. , 2014, Chemical reviews.

[41]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[42]  S. Ogale,et al.  MOF-derived crumpled-sheet-assembled perforated carbon cuboids as highly effective cathode active materials for ultra-high energy density Li-ion hybrid electrochemical capacitors (Li-HECs). , 2014, Nanoscale.

[43]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[44]  Kai Cui,et al.  Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. , 2014, Nano letters.

[45]  V. Aravindan,et al.  Fluorine-doped Fe(2)O(3) as high energy density electroactive material for hybrid supercapacitor applications. , 2014, Chemistry, an Asian journal.

[46]  Min-Young Cho,et al.  A Novel High‐Energy Hybrid Supercapacitor with an Anatase TiO2–Reduced Graphene Oxide Anode and an Activated Carbon Cathode , 2013 .

[47]  S. Xie,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density , 2013 .

[48]  Xianglong Li,et al.  Carbonaceous Electrode Materials for Supercapacitors , 2013, Advanced materials.

[49]  Jiajun Li,et al.  Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. , 2013, ACS nano.

[50]  Yongsheng Chen,et al.  A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density , 2013 .

[51]  Huanlei Wang,et al.  Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors , 2013 .

[52]  Myung-Hyun Ryou,et al.  Functionalized graphene for high performance lithium ion capacitors. , 2012, ChemSusChem.

[53]  F. Nüesch,et al.  Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites , 2012 .

[54]  R. Ruoff,et al.  Activated graphene as a cathode material for Li-ion hybrid supercapacitors. , 2012, Physical chemistry chemical physics : PCCP.

[55]  Young-Geun Lim,et al.  Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitor , 2011 .

[56]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[57]  Yusaku Isobe,et al.  High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors , 2010 .

[58]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[59]  Jin-Song Hu,et al.  Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for Lithium‐Ion Batteries , 2008 .

[60]  Itaru Honma,et al.  Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. , 2007, Journal of the American Chemical Society.

[61]  Qiang Wang,et al.  A Hybrid Supercapacitor Fabricated with a Carbon Nanotube Cathode and a TiO2–B Nanowire Anode , 2006 .

[62]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[63]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[64]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[65]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[66]  Zhengu Chen,et al.  3D Nanocomposite Architectures from Carbon‐Nanotube‐Threaded Nanocrystals for High‐Performance Electrochemical Energy Storage , 2014, Advanced materials.

[67]  Pierre-Louis Taberna,et al.  A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode , 2012 .

[68]  Glenn Amatucci,et al.  Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes , 2003 .