Modeling global indices for estimating non-photosynthetic vegetation cover

[1]  C. Daughtry,et al.  Optimizing Landsat Next Shortwave Infrared Bands for Crop Residue Characterization , 2022, Remote. Sens..

[2]  D. Roberts,et al.  Drought impact on cropland use monitored with AVIRIS imagery in Central Valley, California. , 2022, Science of the Total Environment.

[3]  R. Gautam,et al.  Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane , 2022, Atmospheric Chemistry and Physics.

[4]  David M. Bearden,et al.  Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s , 2021, Journal of geophysical research. Biogeosciences.

[5]  Wenzhi Zhao,et al.  Estimating fractional cover of non-photosynthetic vegetation for various grasslands based on CAI and DFI , 2021, Ecological Indicators.

[6]  Raymond F. Kokaly,et al.  Evaluation of SWIR Crop Residue Bands for the Landsat Next Mission , 2021, Remote. Sens..

[7]  Jens Nieke,et al.  Copernicus Hyperspectral Imaging Mission for the Environment (Chime) , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[8]  Joel McCorkel,et al.  Landsat 9: Empowering open science and applications through continuity , 2020 .

[9]  D. Thompson,et al.  An Earth Science Imaging Spectroscopy Mission: The Earth Surface Mineral Dust Source Investigation (EMIT) , 2020, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Craig S. T. Daughtry,et al.  Estimates of Conservation Tillage Practices Using Landsat Archive , 2020, Remote. Sens..

[11]  Heather McNairn,et al.  Assessing Soil Cover Levels during the Non-Growing Season Using Multitemporal Satellite Imagery and Spectral Unmixing Techniques , 2020, Remote. Sens..

[12]  R. Kokaly,et al.  Dust Deposited on Snow Cover in the San Juan Mountains, Colorado, 2011–2016: Compositional Variability Bearing on Snow‐Melt Effects , 2020, Journal of Geophysical Research: Atmospheres.

[13]  H. Blanco‐Canqui,et al.  Does occasional tillage undo the ecosystem services gained with no-till? A review , 2020 .

[14]  A. Harti,et al.  Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications , 2020 .

[15]  Zhe Zhu,et al.  Overall Methodology Design for the United States National Land Cover Database 2016 Products , 2019, Remote. Sens..

[16]  M. B. Ceddia,et al.  The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges , 2019, Geoderma.

[17]  Bakhtiar Feizizadeh,et al.  Fuzzy Object-Based Image Analysis Methods Using Sentinel-2A and Landsat-8 Data to Map and Characterize Soil Surface Residue , 2019, Remote. Sens..

[18]  Paul D. Gader,et al.  Comparison of Methods for Modeling Fractional Cover Using Simulated Satellite Hyperspectral Imager Spectra , 2019, Remote. Sens..

[19]  Jacob Shermeyer,et al.  Mapping Crop Residue by Combining Landsat and WorldView-3 Satellite Imagery , 2019, Remote. Sens..

[20]  Jibo Yue,et al.  Using Hyperspectral Crop Residue Angle Index to Estimate Maize and Winter-Wheat Residue Cover: A Laboratory Study , 2019, Remote. Sens..

[21]  Paul D. Gader,et al.  Plant species' spectral emissivity and temperature using the hyperspectral thermal emission spectrometer (HyTES) sensor , 2019, Remote Sensing of Environment.

[22]  David B. Lobell,et al.  Satellite mapping of tillage practices in the North Central US region from 2005 to 2016 , 2019, Remote Sensing of Environment.

[23]  C. Justice,et al.  The Harmonized Landsat and Sentinel-2 surface reflectance data set , 2018, Remote Sensing of Environment.

[24]  Jacob Shermeyer,et al.  Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices , 2018, Remote. Sens..

[25]  Rocchina Guarini,et al.  Prisma: The Italian Hyperspectral Mission , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[26]  Stuart H. Sweeney,et al.  A framework for detecting conifer mortality across an ecoregion using high spatial resolution spaceborne imaging spectroscopy , 2018 .

[27]  Raymond F. Kokaly,et al.  Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range , 2018 .

[28]  Jacob Shermeyer,et al.  Improved crop residue cover estimates obtained by coupling spectral indices for residue and moisture , 2018 .

[29]  C. Ballabio,et al.  LUCAS Soil, the largest expandable soil dataset for Europe: a review , 2018 .

[30]  Steven J. Burian,et al.  Spatiotemporal Variability of Lake Water Quality in the Context of Remote Sensing Models , 2017, Remote. Sens..

[31]  Daniel Schläpfer,et al.  APDA Water Vapor Retrieval Validation for Sentinel-2 Imagery , 2017, IEEE Geoscience and Remote Sensing Letters.

[32]  R. Kokaly,et al.  Iron oxide minerals in dust-source sediments from the Bodélé Depression, Chad: Implications for radiative properties and Fe bioavailability of dust plumes from the Sahara , 2016 .

[33]  Craig S. T. Daughtry,et al.  Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions , 2016, Remote. Sens..

[34]  Viacheslav I. Adamchuk,et al.  A global spectral library to characterize the world’s soil , 2016 .

[35]  Raymond F. Kokaly,et al.  Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[36]  Kaishan Song,et al.  Estimation of Maize Residue Cover Using Landsat-8 OLI Image Spectral Information and Textural Features , 2015, Remote. Sens..

[37]  Dar A. Roberts,et al.  Monitoring the Impacts of Severe Drought on Southern California Chaparral Species using Hyperspectral and Thermal Infrared Imagery , 2015, Remote. Sens..

[38]  John F. Mustard,et al.  Forest cover change in Miombo Woodlands: modeling land cover of African dry tropical forests with linear spectral mixture analysis , 2015 .

[39]  Patrick Hostert,et al.  The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation , 2015, Remote. Sens..

[40]  S. Hobbie Plant species effects on nutrient cycling: revisiting litter feedbacks. , 2015, Trends in ecology & evolution.

[41]  T. Malthus,et al.  Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data , 2015 .

[42]  Mark E. Miller,et al.  Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): Controls on radiative properties of snow cover and comparison to some dust-source sediments , 2014 .

[43]  Prasad S. Thenkabail,et al.  Biomass modeling of four water intensiveleading world crops using hyperspectral narrowbands in support of HyspIRI Mission , 2014 .

[44]  Scott L. Powell,et al.  Bringing an ecological view of change to Landsat‐based remote sensing , 2014 .

[45]  R. Kennett,et al.  MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code , 2014, 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[46]  D. Roberts,et al.  Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries , 2013 .

[47]  Craig S. T. Daughtry,et al.  Assessment of spectral indices for cover estimation of senescent vegetation , 2013 .

[48]  C. Daughtry,et al.  Multitemporal remote sensing of crop residue cover and tillage practices: A validation of the minNDTI strategy in the United States , 2013, Journal of Soil and Water Conservation.

[49]  Raymond F. Kokaly,et al.  Spectroscopic remote sensing of the distribution and persistence of oil from the Deepwater Horizon spill in Barataria Bay marshes , 2013 .

[50]  Xin-shi Zhang,et al.  Evaluating cellulose absorption index (CAI) for non-photosynthetic biomass estimation in the desert steppe of Inner Mongolia , 2012 .

[51]  Akira Iwasaki,et al.  Hyperspectral Imager Suite (HISUI) -Japanese hyper-multi spectral radiometer , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[52]  G. Okin,et al.  The contribution of brown vegetation to vegetation dynamics. , 2010, Ecology.

[53]  Craig S. T. Daughtry,et al.  An Improved ASTER Index for Remote Sensing of Crop Residue , 2009, Remote. Sens..

[54]  C. Daughtry,et al.  Effect of Soil Spectral Properties on Remote Sensing of Crop Residue Cover , 2009 .

[55]  R. Kokaly,et al.  Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies , 2009 .

[56]  W. Verstraeten,et al.  Nonlinear Hyperspectral Mixture Analysis for tree cover estimates in orchards , 2009 .

[57]  C. Daughtry,et al.  Mitigating the effects of soil and residue water contents on remotely sensed estimates of crop residue cover , 2008 .

[58]  Gregory P. Asner,et al.  Objective indicators of pasture degradation from spectral mixture analysis of Landsat imagery , 2008 .

[59]  George C. Hurtt,et al.  Hurricane Katrina's Carbon Footprint on U.S. Gulf Coast Forests , 2007, Science.

[60]  B. Quayle,et al.  A Project for Monitoring Trends in Burn Severity , 2007 .

[61]  J. V. Soares,et al.  Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data , 2007 .

[62]  D. Roberts,et al.  Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California , 2006 .

[63]  Heather McNairn,et al.  Estimating and mapping crop residues cover on agricultural lands using hyperspectral and IKONOS data , 2006 .

[64]  J. Qi,et al.  Remote Sensing for Grassland Management in the Arid Southwest , 2006 .

[65]  P. Dennison Fire detection in imaging spectrometer data using atmospheric carbon dioxide absorption , 2006 .

[66]  K. Shepherd,et al.  Global soil characterization with VNIR diffuse reflectance spectroscopy , 2006 .

[67]  Gregory S. Okin,et al.  Relative spectral mixture analysis — A multitemporal index of total vegetation cover , 2005 .

[68]  Gregory P. Asner,et al.  Satellite Monitoring of Vegetation Phenology and Fire Fuel Conditions in Hawaiian Drylands , 2005 .

[69]  James E. McMurtrey,et al.  Remote sensing the spatial distribution of crop residues , 2005 .

[70]  S. Ferrari,et al.  Beta Regression for Modelling Rates and Proportions , 2004 .

[71]  D. Roberts,et al.  Spectral and Structural Measures of Northwest Forest Vegetation at Leaf to Landscape Scales , 2004, Ecosystems.

[72]  C. Daughtry,et al.  Cellulose absorption index (CAI) to quantify mixed soil-plant litter scenes , 2003 .

[73]  James E. McMurtrey,et al.  Remote sensing of crop residue cover and soil tillage intensity , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[74]  Darrel L. Williams,et al.  The Landsat 7 mission: terrestrial research and applications for the 21st century , 2001 .

[75]  D. Lobell,et al.  A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation , 2000 .

[76]  C. Daughtry,et al.  Plant Litter and Soil Reflectance , 2000 .

[77]  R. Clark,et al.  Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression , 1999 .

[78]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[79]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[80]  S. Gerstl,et al.  Nonlinear spectral mixing models for vegetative and soil surfaces , 1994 .

[81]  D. Roberts,et al.  Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data , 1993 .

[82]  C. Elvidge Visible and near infrared reflectance characteristics of dry plant materials , 1990 .

[83]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[84]  Craig S. T. Daughtry,et al.  Discriminating Crop Residues from Soil by Shortwave Infrared Reflectance , 2001 .

[85]  Aram M. Mika,et al.  Three Decades of Landsat Instruments , 1997 .

[86]  Prasanna H. Gowda,et al.  Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices , 1997 .

[87]  Rattan Lal,et al.  The Role of Residues Management in Sustainable Agricultural Systems , 1995 .