Parametrizing gravitational-wave polarizations
暂无分享,去创建一个
[1] Gravitational-wave population inference at past time infinity , 2021, Physical Review D.
[2] S. Biscoveanu,et al. Measuring binary black hole orbital-plane spin orientations , 2021, Physical Review D.
[3] P. K. Panda,et al. Tests of General Relativity with GWTC-3 , 2021, 2112.06861.
[4] T. Littenberg,et al. BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.
[5] M. J. Williams,et al. Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14529.
[6] T. Littenberg,et al. Morphology-independent test of the mixed polarization content of transient gravitational wave signals , 2021, Physical Review D.
[7] D. Hogg,et al. Data Analysis Recipes: Products of multivariate Gaussians in Bayesian inferences , 2020, 2005.14199.
[8] S. Fairhurst,et al. Two-harmonic approximation for gravitational waveforms from precessing binaries , 2019, Physical Review D.
[9] T. Peters. Gravitation , 2018, PHYSIK.
[10] Gregorio Carullo,et al. Observational black hole spectroscopy: A time-domain multimode analysis of GW150914 , 2018, Physical Review D.
[11] A. Jaffe,et al. On the amplitude and Stokes parameters of a stochastic gravitational-wave background , 2018, Monthly Notices of the Royal Astronomical Society.
[12] R. Sarpong,et al. Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.
[13] M. Isi,et al. Measuring stochastic gravitational-wave energy beyond general relativity , 2018, Physical Review D.
[14] Daniel Foreman-Mackey,et al. Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.
[15] M. Pitkin,et al. A nested sampling code for targeted searches for continuous gravitational waves from pulsars , 2017, 1705.08978.
[16] M. Pitkin,et al. Probing dynamical gravity with the polarization of continuous gravitational waves , 2017, 1703.07530.
[17] Joseph D. Romano,et al. Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.
[18] J. Soda,et al. Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays , 2015, 1512.09139.
[19] G. B. Cook,et al. Gravitational perturbations of the Kerr geometry: High-accuracy study , 2014, 1410.7698.
[20] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[21] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[22] B. Iyer,et al. The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries , 2012, 1204.1043.
[23] Kurt Hinterbichler. Theoretical Aspects of Massive Gravity , 2011, 1105.3735.
[24] G.Mitselmakher,et al. Coherent method for detection of gravitational wave bursts , 2008, 0802.3232.
[25] B. Iyer,et al. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.
[26] N. Seto,et al. Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: Measuring a circular-polarization mode , 2008, 0801.4185.
[27] R. Romani,et al. Fitting Pulsar Wind Tori. II. Error Analysis and Applications , 2007, 0710.4168.
[28] Lawrence E. Kidder,et al. Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit , 2007, 0710.0614.
[29] E. Berti,et al. Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.
[30] G. Woan,et al. Bayesian estimation of pulsar parameters from gravitational wave data , 2005, gr-qc/0508096.
[31] Tx,et al. Constraint Likelihood analysis for a network of gravitational wave detectors , 2005, gr-qc/0508068.
[32] S Klimenko,et al. A wavelet method for detection of gravitational wave bursts , 2004 .
[33] R. Romani,et al. Fitting Pulsar Wind Tori , 2003, astro-ph/0310155.
[34] E. W. Leaver,et al. An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[35] K. Thorne. The theory of gravitational radiation - an introductory review , 1983 .
[36] K. Thorne. Multipole expansions of gravitational radiation , 1980 .
[37] S. Chandrasekhar,et al. The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[38] Saul A. Teukolsky,et al. Perturbations of a rotating black hole , 1974 .
[39] Angelo Marcello Anile,et al. Gravitational Stokes parameters , 1974 .
[40] Saul A. Teukolsky,et al. Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .
[41] W. Press,et al. Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric , 1973 .
[42] W. Press. Long Wave Trains of Gravitational Waves from a Vibrating Black Hole , 1971 .
[43] C. Misner,et al. STABILITY OF THE SCHWARZSCHILD METRIC. , 1970 .
[44] F. Rohrlich,et al. Spin‐s Spherical Harmonics and ð , 1967 .