Parametrizing gravitational-wave polarizations

We review the formalism underlying the modeling of gravitational wave (GW) polarizations, and the coordinate frames used to define them. In the process, we clarify the notion of “polarization angle” and identify three conceptually distinct definitions. We describe how those are related and how they arise in the practice of GW data analysis, explaining in detail the relevant conventions that have become standard the LIGO-Virgo standard. Furthermore, we show that any GW signal can be expressed as a superposition of elliptical (i.e., fully-polarized) states, and examine the properties and possible parametrizations of such elementary states. We discuss a variety of common parametrizations for fully-polarized modes, and compute Jacobians for the coordinate transformations relating them. This allows us to examine the suitability of each parametrization for different applications, including unmodeled or semimodeled signal reconstructions. We point out that analyses parametrized directly in terms of the plus and cross mode amplitudes will tend to implicitly favor high signal power, and to prefer linearly-polarized waves along a predefined direction; this makes them suboptimal for targeting face-on or face-off sources, which will tend to be circularly polarized. We discuss alternative parametrizations, with applications extending to continuous waves, ringdown studies, and unmodeled analyses like BayesWave .

[1]  Gravitational-wave population inference at past time infinity , 2021, Physical Review D.

[2]  S. Biscoveanu,et al.  Measuring binary black hole orbital-plane spin orientations , 2021, Physical Review D.

[3]  P. K. Panda,et al.  Tests of General Relativity with GWTC-3 , 2021, 2112.06861.

[4]  T. Littenberg,et al.  BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.

[5]  M. J. Williams,et al.  Tests of General Relativity with Binary Black Holes from the second LIGO-Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14529.

[6]  T. Littenberg,et al.  Morphology-independent test of the mixed polarization content of transient gravitational wave signals , 2021, Physical Review D.

[7]  D. Hogg,et al.  Data Analysis Recipes: Products of multivariate Gaussians in Bayesian inferences , 2020, 2005.14199.

[8]  S. Fairhurst,et al.  Two-harmonic approximation for gravitational waveforms from precessing binaries , 2019, Physical Review D.

[9]  T. Peters Gravitation , 2018, PHYSIK.

[10]  Gregorio Carullo,et al.  Observational black hole spectroscopy: A time-domain multimode analysis of GW150914 , 2018, Physical Review D.

[11]  A. Jaffe,et al.  On the amplitude and Stokes parameters of a stochastic gravitational-wave background , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[13]  M. Isi,et al.  Measuring stochastic gravitational-wave energy beyond general relativity , 2018, Physical Review D.

[14]  Daniel Foreman-Mackey,et al.  Data Analysis Recipes: Using Markov Chain Monte Carlo , 2017, 1710.06068.

[15]  M. Pitkin,et al.  A nested sampling code for targeted searches for continuous gravitational waves from pulsars , 2017, 1705.08978.

[16]  M. Pitkin,et al.  Probing dynamical gravity with the polarization of continuous gravitational waves , 2017, 1703.07530.

[17]  Joseph D. Romano,et al.  Detection methods for stochastic gravitational-wave backgrounds: a unified treatment , 2016, Living reviews in relativity.

[18]  J. Soda,et al.  Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays , 2015, 1512.09139.

[19]  G. B. Cook,et al.  Gravitational perturbations of the Kerr geometry: High-accuracy study , 2014, 1410.7698.

[20]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[21]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[22]  B. Iyer,et al.  The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries , 2012, 1204.1043.

[23]  Kurt Hinterbichler Theoretical Aspects of Massive Gravity , 2011, 1105.3735.

[24]  G.Mitselmakher,et al.  Coherent method for detection of gravitational wave bursts , 2008, 0802.3232.

[25]  B. Iyer,et al.  The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.

[26]  N. Seto,et al.  Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: Measuring a circular-polarization mode , 2008, 0801.4185.

[27]  R. Romani,et al.  Fitting Pulsar Wind Tori. II. Error Analysis and Applications , 2007, 0710.4168.

[28]  Lawrence E. Kidder,et al.  Using full information when computing modes of post-Newtonian waveforms from inspiralling compact binaries in circular orbit , 2007, 0710.0614.

[29]  E. Berti,et al.  Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions , 2005, gr-qc/0511111.

[30]  G. Woan,et al.  Bayesian estimation of pulsar parameters from gravitational wave data , 2005, gr-qc/0508096.

[31]  Tx,et al.  Constraint Likelihood analysis for a network of gravitational wave detectors , 2005, gr-qc/0508068.

[32]  S Klimenko,et al.  A wavelet method for detection of gravitational wave bursts , 2004 .

[33]  R. Romani,et al.  Fitting Pulsar Wind Tori , 2003, astro-ph/0310155.

[34]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  K. Thorne The theory of gravitational radiation - an introductory review , 1983 .

[36]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[37]  S. Chandrasekhar,et al.  The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[38]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole , 1974 .

[39]  Angelo Marcello Anile,et al.  Gravitational Stokes parameters , 1974 .

[40]  Saul A. Teukolsky,et al.  Perturbations of a rotating black hole. I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations , 1973 .

[41]  W. Press,et al.  Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric , 1973 .

[42]  W. Press Long Wave Trains of Gravitational Waves from a Vibrating Black Hole , 1971 .

[43]  C. Misner,et al.  STABILITY OF THE SCHWARZSCHILD METRIC. , 1970 .

[44]  F. Rohrlich,et al.  Spin‐s Spherical Harmonics and ð , 1967 .