On the Global Solution of Linear Programs with Linear Complementarity Constraints

This paper presents a parameter-free integer-programming-based algorithm for the global resolution of a linear program with linear complementarity constraints (LPCCs). The cornerstone of the algorithm is a minimax integer program formulation that characterizes and provides certificates for the three outcomes—infeasibility, unboundedness, or solvability—of an LPCC. An extreme point/ray generation scheme in the spirit of Benders decomposition is developed, from which valid inequalities in the form of satisfiability constraints are obtained. The feasibility problem of these inequalities and the carefully guided linear-programming relaxations of the LPCC are the workhorses of the algorithm, which also employs a specialized procedure for the sparsification of the satifiability cuts. We establish the finite termination of the algorithm and report computational results using the algorithm for solving randomly generated LPCCs of reasonable sizes. The results establish that the algorithm can handle infeasible, unbounded, and solvable LPCCs effectively.

[1]  Sven Leyffer,et al.  Solving mathematical programs with complementarity constraints as nonlinear programs , 2004, Optim. Methods Softw..

[2]  C. Floudas,et al.  Primal-relaxed dual global optimization approach , 1993 .

[3]  Stephen J. Wright,et al.  Some properties of regularization and penalization schemes for MPECs , 2004, Optim. Methods Softw..

[4]  Masao Fukushima,et al.  An Implementable Active-Set Algorithm for Computing a B-Stationary Point of a Mathematical Program with Linear Complementarity Constraints , 2002, SIAM J. Optim..

[5]  Jing Hu,et al.  Classification model selection via bilevel programming , 2008, Optim. Methods Softw..

[6]  Masao Fukushima,et al.  Complementarity Constraint Qualifications and Simplified B-Stationarity Conditions for Mathematical Programs with Equilibrium Constraints , 1999, Comput. Optim. Appl..

[7]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[8]  Toshihide Ibaraki,et al.  Technical Note - Complementary Programming , 1971, Oper. Res..

[9]  John N. Hooker,et al.  Logic-Based Methods for Optimization , 1994, PPCP.

[10]  Jorge Nocedal,et al.  Interior Methods for Mathematical Programs with Complementarity Constraints , 2006, SIAM J. Optim..

[11]  S. Leyffer Complementarity constraints as nonlinear equations: Theory and numerical experience , 2006 .

[12]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[13]  J. V. Outrata,et al.  Optimality conditions for a class of mathematical programs with equilibrium constraints: strongly regular case , 1999, Kybernetika.

[14]  D. Ralph,et al.  Convergence of a Penalty Method for Mathematical Programming with Complementarity Constraints , 2004 .

[15]  Masao Fukushima,et al.  Some Feasibility Issues in Mathematical Programs with Equilibrium Constraints , 1998, SIAM J. Optim..

[16]  John N. Hooker,et al.  Integrated methods for optimization , 2011, International series in operations research and management science.

[17]  Stephen J. Wright,et al.  Elastic-mode algorithms for mathematical programs with equilibrium constraints: global convergence and stationarity properties , 2007, Math. Program..

[18]  Stephan Dempe,et al.  Foundations of Bilevel Programming , 2002 .

[19]  Jane J. Ye,et al.  Optimality conditions for bilevel programming problems , 1995 .

[20]  Michel Théra,et al.  Ill-posed Variational Problems and Regularization Techniques , 1999 .

[21]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[22]  J. J. Ye Constraint Qualifications and Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 2000, SIAM J. Optim..

[23]  J. Hooker,et al.  Logic-based Benders decomposition , 2003 .

[24]  Stefan Scholtes,et al.  Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity , 2000, Math. Oper. Res..

[25]  Mihai Anitescu,et al.  Global Convergence of an Elastic Mode Approach for a Class of Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[26]  Jane J. Ye,et al.  Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints , 2005 .

[27]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[28]  John E. Mitchell,et al.  A branch and cut algorithm for MAX-SAT and weighted MAX-SAT , 1996, Satisfiability Problem: Theory and Applications.

[29]  Sven Leyffer,et al.  Local Convergence of SQP Methods for Mathematical Programs with Equilibrium Constraints , 2006, SIAM J. Optim..

[30]  Jing Hu,et al.  Model Selection via Bilevel Optimization , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[31]  Matteo Fischetti,et al.  Combinatorial Benders' Cuts for Mixed-Integer Linear Programming , 2006, Oper. Res..

[32]  Jane J. Ye,et al.  Optimality Conditions for Optimization Problems with Complementarity Constraints , 1999, SIAM J. Optim..

[33]  Charles Audet,et al.  New Branch-and-Cut Algorithm for Bilevel Linear Programming , 2004 .

[34]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[35]  DONALD GOLDFARB,et al.  AN ACTIVE SET METHOD FOR MATHEMATICAL PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS , 2007 .

[36]  Pierre Hansen,et al.  New Branch-and-Bound Rules for Linear Bilevel Programming , 1989, SIAM J. Sci. Comput..

[37]  Michal Kočvara,et al.  Nonsmooth approach to optimization problems with equilibrium constraints : theory, applications, and numerical results , 1998 .

[38]  Daniel Ralph,et al.  Extension of Quasi-Newton Methods to Mathematical Programs with Complementarity Constraints , 2003, Comput. Optim. Appl..

[39]  Pierre Hansen,et al.  Links Between Linear Bilevel and Mixed 0–1 Programming Problems , 1995 .

[40]  Robert G. Jeroslow,et al.  Cutting-Planes for Complementarity Constraints , 1978 .

[41]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[42]  C. Kanzow,et al.  On the Guignard constraint qualification for mathematical programs with equilibrium constraints , 2005 .

[43]  Sven Leyffer,et al.  On the global minimization of the value-at-risk , 2004, Optim. Methods Softw..

[44]  Mihai Anitescu,et al.  On Using the Elastic Mode in Nonlinear Programming Approaches to Mathematical Programs with Complementarity Constraints , 2005, SIAM J. Optim..

[45]  Brian Borchers,et al.  A Two-Phase Exact Algorithm for MAX-SAT and Weighted MAX-SAT Problems , 1998, J. Comb. Optim..

[46]  Daniel Ralph,et al.  Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints , 1999, SIAM J. Optim..

[47]  Leon S. Lasdon,et al.  Optimization Theory of Large Systems , 1970 .

[48]  Jing Hu,et al.  Bilevel Model Selection for Support Vector Machines , 2007 .

[49]  Stefan Scholtes,et al.  Convergence Properties of a Regularization Scheme for Mathematical Programs with Complementarity Constraints , 2000, SIAM J. Optim..

[50]  J. Pang,et al.  Convergence of a Smoothing Continuation Method for Mathematical Progams with Complementarity Constraints , 1999 .