Live imaging of intra-lysosome pH in cell lines and primary neuronal culture using a novel genetically encoded biosensor

ABSTRACT Disorders of lysosomal physiology have increasingly been found to underlie the pathology of a rapidly growing cast of neurodevelopmental disorders and sporadic diseases of aging. One cardinal aspect of lysosomal (dys)function is lysosomal acidification in which defects trigger lysosomal stress signaling and defects in proteolytic capacity. We have developed a genetically encoded ratiometric probe to measure lysosomal pH coupled with a purification tag to efficiently purify lysosomes for both proteomic and in vitro evaluation of their function. Using our probe, we showed that lysosomal pH is remarkably stable over a period of days in a variety of cell types. Additionally, this probe can be used to determine that lysosomal stress signaling via TFEB is uncoupled from gross changes in lysosomal pH. Finally, we demonstrated that while overexpression of ARL8B GTPase causes striking alkalinization of peripheral lysosomes in HEK293 T cells, peripheral lysosomes per se are no less acidic than juxtanuclear lysosomes in our cell lines. Abbreviations: ARL8B: ADP ribosylation factor like GTPase 8B; ATP: adenosine triphosphate; ATP5F1B/ATPB: ATP synthase F1 subunit beta; ATP6V1A: ATPase H+ transporting V1 subunit A; Baf: bafilomycin A1; BLOC-1: biogenesis of lysosome-related organelles complex 1; BSA: bovine serum albumin; Cos7: African green monkey kidney fibroblast-like cell line; CQ: chloroquine; CTSB: cathepsin B; CYCS: cytochrome c, somatic; DAPI: 4′,6-diamidino −2- phenylindole; DIC: differential interference contrast; DIV: days in vitro; DMEM: Dulbecco′s modified Eagle′s medium;‎ E8: embryonic day 8; EEA1: early endosome antigen 1; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid; ER: endoplasmic reticulum; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GABARAPL2: GABA type A receptor associated protein like 2; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GOLGA2/GM130: golgin A2; GTP: guanosine triphosphate; HEK293T: human embryonic kidney 293 cells, that expresses a mutant version of the SV40 large T antigen; HeLa: Henrietta Lacks-derived cell; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HRP: horseradish peroxidase; IGF2R/ciM6PR: insulin like growth factor 2 receptor; LAMP1/2: lysosomal associated membrane protein 1/2; LMAN2/VIP36: lectin, mannose binding 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PCR: polymerase chain reaction; PDL: poly-d-lysine; PGK1p: promotor from human phosphoglycerate kinase 1; PIKFYVE: phosphoinositide kinase, FYVE-type zinc finger containing; PPT1/CLN1: palmitoyl-protein thioesterase 1; RPS6KB1/p70: ribosomal protein S6 kinase B1; STAT3: signal transducer and activator of transcription 3; TAX1BP1: Tax1 binding protein 1; TFEB: transcription factor EB; TGN: trans-Golgi network; TGOLN2/TGN46: trans-Golgi network protein 2; TIRF: total internal reflection fluorescence; TMEM106B: transmembrane protein 106B; TOR: target of rapamycin; TRPM2: transient receptor potential cation channel subfamily M member 2; V-ATPase: vacuolar-type proton-translocating ATPase; VPS35: VPS35 retromer complex component.

[1]  E. Hinoi,et al.  Inhibition of the glutamine transporter SNAT1 confers neuroprotection in mice by modulating the mTOR-autophagy system , 2019, Communications Biology.

[2]  M. Stagi,et al.  Mitochondrial respiratory chain deficiency inhibits lysosomal hydrolysis , 2019, Autophagy.

[3]  H. Rane,et al.  Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease , 2019, Front. Physiol..

[4]  A. Mikos,et al.  Ubiquilins Regulate Autophagic Flux through mTOR Signaling and Lysosomal Acidification , 2019, Nature Cell Biology.

[5]  R. Zoncu,et al.  The lysosome as a cellular centre for signalling, metabolism and quality control , 2019, Nature Cell Biology.

[6]  Y. Assaraf,et al.  Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity , 2018, Cell Death & Disease.

[7]  F. Fröhlich,et al.  A systematic approach to identify recycling endocytic cargo depending on the GARP complex , 2018, bioRxiv.

[8]  A. Shisheva,et al.  Apilimod, a candidate anticancer therapeutic, arrests not only PtdIns(3,5)P2 but also PtdIns5P synthesis by PIKfyve and induces bafilomycin A1-reversible aberrant endomembrane dilation , 2018, PloS one.

[9]  S. Munro,et al.  The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila , 2018, Biology Open.

[10]  B. Liu,et al.  STAT3 associates with vacuolar H+-ATPase and regulates cytosolic and lysosomal pH , 2018, Cell Research.

[11]  Xingdong Zhou,et al.  Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion , 2018, Autophagy.

[12]  G. Packham,et al.  Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer , 2018, Cancer medicine.

[13]  M. Kazakova,et al.  LAMP‐1 gene is overexpressed in high grade glioma , 2018, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[14]  Callen T. Wallace,et al.  Lysosome enlargement during inhibition of the lipid kinase PIKfyve proceeds through lysosome coalescence , 2018, Journal of Cell Science.

[15]  Shekoufeh Almasi,et al.  TRPM2 channel–mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway , 2018, The Journal of Biological Chemistry.

[16]  G. Superti-Furga,et al.  LAMTOR/Ragulator is a negative regulator of Arl8b- and BORC-dependent late endosomal positioning , 2017, The Journal of cell biology.

[17]  J. Bonifacino,et al.  A Ragulator–BORC interaction controls lysosome positioning in response to amino acid availability , 2017, The Journal of cell biology.

[18]  S. Hell,et al.  SRpHi ratiometric pH biosensors for super-resolution microscopy , 2017, Nature Communications.

[19]  M. Romero,et al.  Optical Quantification of Intracellular pH in Drosophila melanogaster Malpighian Tubule Epithelia with a Fluorescent Genetically-encoded pH Indicator. , 2017, Journal of visualized experiments : JoVE.

[20]  S. Strittmatter,et al.  Loss of TMEM106B Ameliorates Lysosomal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice , 2017, Neuron.

[21]  U. Salzer-Muhar,et al.  Surface LAMP-2 Is an Endocytic Receptor That Diverts Antigen Internalized by Human Dendritic Cells into Highly Immunogenic Exosomes , 2017, The Journal of Immunology.

[22]  S. van Liempd,et al.  BLOC-1 deficiency causes alterations in amino acid profile and in phospholipid and adenosine metabolism in the postnatal mouse hippocampus , 2017, Scientific Reports.

[23]  M. Jadot,et al.  SNAT7 is the primary lysosomal glutamine exporter required for extracellular protein-dependent growth of cancer cells , 2017, Proceedings of the National Academy of Sciences.

[24]  R. Zoncu,et al.  Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex , 2017, Science.

[25]  N. Pattabiraman,et al.  Misrouting of v-ATPase subunit V0a1 dysregulates lysosomal acidification in a neurodegenerative lysosomal storage disease model , 2017, Nature Communications.

[26]  Dawn M. Toolan,et al.  TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation , 2017, Proceedings of the National Academy of Sciences.

[27]  Y. Assaraf,et al.  Lysosomal accumulation of anticancer drugs triggers lysosomal exocytosis , 2017, Oncotarget.

[28]  A. Hoischen,et al.  Mutations in ATP6V1E1 or ATP6V1A Cause Autosomal-Recessive Cutis Laxa. , 2017, American Journal of Human Genetics.

[29]  M. Noble,et al.  Lysosomal Re-acidification Prevents Lysosphingolipid-Induced Lysosomal Impairment and Cellular Toxicity , 2016, PLoS biology.

[30]  T. Yoo,et al.  Real-time monitoring of vesicle pH in an endocytic pathway using an EGF-conjugated two-photon probe. , 2016, Chemical communications.

[31]  J. Bonifacino,et al.  BORC Functions Upstream of Kinesins 1 and 3 to Coordinate Regional Movement of Lysosomes along Different Microtubule Tracks. , 2016, Cell reports.

[32]  M. Forgac,et al.  Regulation of V-ATPase assembly and function of V-ATPases in tumor cell invasiveness. , 2016, Biochimica et biophysica acta.

[33]  A. Sivaprasadarao,et al.  Reciprocal regulation of actin cytoskeleton remodelling and cell migration by Ca2+ and Zn2+: role of TRPM2 channels , 2016, Journal of Cell Science.

[34]  A. Chen-Plotkin,et al.  Increased expression of the frontotemporal dementia risk factor TMEM106B causes C9orf72-dependent alterations in lysosomes. , 2016, Human molecular genetics.

[35]  S. Bröer,et al.  Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells* , 2016, The Journal of Biological Chemistry.

[36]  Valentin Jaumouillé,et al.  The position of lysosomes within the cell determines their luminal pH , 2016, The Journal of cell biology.

[37]  Federico N. Soria,et al.  Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases , 2016, Autophagy.

[38]  J. Troncoso,et al.  Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity , 2015, PloS one.

[39]  M. Forgac,et al.  Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly* , 2015, The Journal of Biological Chemistry.

[40]  J. Collinge,et al.  Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology , 2015, Acta Neuropathologica.

[41]  K. Ross,et al.  Transcriptional control of the autophagy-lysosome system in pancreatic cancer , 2015, Nature.

[42]  Mahak Sharma,et al.  Arf-like GTPase Arl8: Moving from the periphery to the center of lysosomal biology , 2015, Cellular logistics.

[43]  Srikanth Budnar,et al.  Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis , 2015, Journal of Cancer Research and Clinical Oncology.

[44]  Gregory A. Wyant,et al.  Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 , 2015, Science.

[45]  G. Superti-Furga,et al.  SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1 , 2014, Nature.

[46]  S. Strittmatter,et al.  Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B , 2014, Molecular and Cellular Neuroscience.

[47]  B. Khakh,et al.  Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin , 2014, The Journal of general physiology.

[48]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[49]  Sheena C. Li,et al.  The signaling lipid PI(3,5)P2 stabilizes V1–Vo sector interactions and activates the V-ATPase , 2014, Molecular biology of the cell.

[50]  L. Cantley,et al.  Spatial Control of the TSC Complex Integrates Insulin and Nutrient Regulation of mTORC1 at the Lysosome , 2014, Cell.

[51]  P. Kane,et al.  The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast , 2014, Molecular biology of the cell.

[52]  M. Stadecker,et al.  Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway* , 2013, The Journal of Biological Chemistry.

[53]  M. Futai,et al.  Glu-44 in the Amino-terminal α-Helix of Yeast Vacuolar ATPase E Subunit (Vma4p) Has a Role for VoV1 Assembly* , 2013, The Journal of Biological Chemistry.

[54]  John A. Tallarico,et al.  PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. , 2013, Chemistry & biology.

[55]  Sooyeon Lee,et al.  Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification , 2013, The European journal of neuroscience.

[56]  Christian M. Metallo,et al.  Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells , 2013, Nature.

[57]  T. Walther,et al.  Native SILAC: Metabolic Labeling of Proteins in Prototroph Microorganisms Based on Lysine Synthesis Regulation* , 2013, Molecular & Cellular Proteomics.

[58]  S. Elledge,et al.  Characterization of Torin2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. , 2013, Cancer research.

[59]  S. Wilkinson,et al.  TBK1 Kinase Addiction in Lung Cancer Cells Is Mediated via Autophagy of Tax1bp1/Ndp52 and Non-Canonical NF-κB Signalling , 2012, PloS one.

[60]  B. Posner,et al.  Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly , 2012, The Journal of Biological Chemistry.

[61]  E. Bézard,et al.  Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration , 2012, Proceedings of the National Academy of Sciences.

[62]  A. Ballabio,et al.  A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB , 2012, The EMBO journal.

[63]  S. Munro,et al.  Arl8 and SKIP Act Together to Link Lysosomes to Kinesin-1 , 2011, Developmental cell.

[64]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[65]  K. Matsuzaki,et al.  Fluorescence ratiometric detection of ligand‐induced receptor internalization using extracellular coiled‐coil tag–probe labeling , 2011, FEBS letters.

[66]  B. Steinberg,et al.  Lysosomal pH and analysis of the counter ion pathways that support acidification , 2011, The Journal of general physiology.

[67]  R. Webster,et al.  Influenza A virus‐induced early activation of ERK and PI3K mediates V‐ATPase‐dependent intracellular pH change required for fusion , 2011, Cellular microbiology.

[68]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[69]  Cahir J. O'Kane,et al.  Lysosomal positioning coordinates cellular nutrient responses , 2011, Nature Cell Biology.

[70]  A. Hyman,et al.  Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions , 2010, The Journal of cell biology.

[71]  Kevin A Roth,et al.  Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. , 2010, Neuro-oncology.

[72]  T. Biederer,et al.  SynCAM 1 participates in axo-dendritic contact assembly and shapes neuronal growth cones , 2010, Proceedings of the National Academy of Sciences.

[73]  R. Penner,et al.  The calcium‐permeable non‐selective cation channel TRPM2 is modulated by cellular acidification , 2010, The Journal of physiology.

[74]  E. Ikonen,et al.  Role for LAMP-2 in endosomal cholesterol transport , 2009, Journal of cellular and molecular medicine.

[75]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[76]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[77]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[78]  J. Garin,et al.  Regulation of the V-ATPase along the Endocytic Pathway Occurs through Reversible Subunit Association and Membrane Localization , 2008, PloS one.

[79]  Robert E Campbell,et al.  Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors , 2008, Nature Methods.

[80]  Guillermo Ayala,et al.  Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate , 2007, Proceedings of the National Academy of Sciences.

[81]  V. Bindokas,et al.  CFTR regulates phagosome acidification in macrophages and alters bactericidal activity , 2006, Nature Cell Biology.

[82]  R. Arantes,et al.  A Role for Synaptotagmin VII-Regulated Exocytosis of Lysosomes in Neurite Outgrowth from Primary Sympathetic Neurons , 2006, The Journal of Neuroscience.

[83]  S. Munro,et al.  An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility , 2006, Journal of Cell Science.

[84]  M. Lu,et al.  Phosphatidylinositol 3-Kinase-Mediated Effects of Glucose on Vacuolar H+-ATPase Assembly, Translocation, and Acidification of Intracellular Compartments in Renal Epithelial Cells , 2005, Molecular and Cellular Biology.

[85]  M. Forgac,et al.  Involvement of the Nonhomologous Region of Subunit A of the Yeast V-ATPase in Coupling and in Vivo Dissociation* , 2004, Journal of Biological Chemistry.

[86]  R. Lüllmann-Rauch,et al.  Disturbed cholesterol traffic but normal proteolytic function in LAMP-1/LAMP-2 double-deficient fibroblasts. , 2004, Molecular biology of the cell.

[87]  Sylvain V Costes,et al.  Automatic and quantitative measurement of protein-protein colocalization in live cells. , 2004, Biophysical journal.

[88]  Xiao-Song Xie,et al.  Characterization of the Functional Coupling of Bovine Brain Vacuolar-type H+-translocating ATPase , 2003, Journal of Biological Chemistry.

[89]  Sanford M. Simon,et al.  Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells , 2002, The Journal of cell biology.

[90]  P. Kane,et al.  The RAVE Complex Is Essential for Stable Assembly of the Yeast V-ATPase* , 2002, The Journal of Biological Chemistry.

[91]  P. Kinnunen,et al.  Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). , 2001, European journal of biochemistry.

[92]  J. Rohrer,et al.  The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane , 1996, The Journal of cell biology.

[93]  B. Hoffmann,et al.  FITC‐dextran for measuring apoplast pH and apoplastic pH gradients between various cell types in sunflower leaves , 1995 .

[94]  M. Fukuda,et al.  The lysosomal membrane glycoprotein lamp-1 is transported to lysosomes by two alternative pathways. , 1992, Archives of biochemistry and biophysics.

[95]  J. Lippincott-Schwartz,et al.  Cycling of the integral membrane glycoprotein, LEP100, between plasma membrane and lysosomes: Kinetic and morphological analysis , 1987, Cell.

[96]  M. Fedorko Effect of chloroquine on morphology of cytoplasmic granules in maturing human leukocytes--an ultrastructural study. , 1967, The Journal of clinical investigation.

[97]  M. White,et al.  Digitization of Endocytic pH by Hybrid Ultra‐pH‐Sensitive Nanoprobes at Single‐Organelle Resolution , 2017, Advanced materials.

[98]  S. Grinstein,et al.  Measuring Phagosomal pH by Fluorescence Microscopy. , 2017, Methods in molecular biology.

[99]  D. Barber,et al.  Ratiometric imaging of pH probes. , 2014, Methods in cell biology.

[100]  S. Grinstein,et al.  Measurements of Endosomal pH in Live Cells by Dual-Excitation Fluorescence Imaging , 2006 .

[101]  K. Nehrke Intracellular pH measurements in vivo using green fluorescent protein variants. , 2006, Methods in molecular biology.

[102]  S. Heidemann,et al.  The culture of chick forebrain neurons. , 2003, Methods in cell biology.