Exploiting Data Sparsity in Parallel Matrix Powers Computations
暂无分享,去创建一个
[1] Marghoob Mohiyuddin,et al. Tuning Hardware and Software for Multiprocessors , 2012 .
[2] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[3] Lothar Reichel,et al. On the generation of Krylov subspace bases , 2012 .
[4] Shivkumar Chandrasekaran,et al. A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..
[5] Ronald Kriemann. Parallele Algorithmen für H-Matrizen , 2004 .
[6] James Demmel,et al. Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.
[7] J. Demmel,et al. Avoiding Communication in Computing Krylov Subspaces , 2007 .
[8] Robert A. van de Geijn,et al. Collective communication: theory, practice, and experience , 2007, Concurr. Comput. Pract. Exp..
[9] Sivan Toledo,et al. Efficient Out-of-Core Algorithms for Linear Relaxation Using Blocking Covers , 1997, J. Comput. Syst. Sci..
[10] Samuel Williams,et al. Roofline: an insightful visual performance model for multicore architectures , 2009, CACM.
[11] H. T. Kung,et al. I/O complexity: The red-blue pebble game , 1981, STOC '81.
[12] Jianlin Xia,et al. Efficient scalable algorithms for hierarchically semiseparable matrices , 2011 .