Random tree Besov priors – Towards fractal imaging
暂无分享,去创建一个
Matti Lassas | Samuli Siltanen | Eero Saksman | Hanne Kekkonen | E. Saksman | S. Siltanen | M. Lassas | Hanne Kekkonen
[1] Samuel Karlin,et al. A First Course on Stochastic Processes , 1968 .
[2] A. Stuart,et al. The Bayesian Approach to Inverse Problems , 2013, 1302.6989.
[3] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[4] Benoit B. Mandelbrot,et al. The inescapable need for fractal tools in finance , 2005 .
[5] Maarten Jansen,et al. Noise Reduction by Wavelet Thresholding , 2001 .
[6] S. Lasanen,et al. Measurements and infinite‐dimensional statistical inverse theory , 2007 .
[7] M. Dashti,et al. Rates of contraction of posterior distributions based on p-exponential priors , 2018, Bernoulli.
[8] Markus Reiss,et al. Asymptotic equivalence for nonparametric regression with multivariate and random design , 2006, math/0607342.
[9] A. Stuart,et al. MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.
[10] Martin Vetterli,et al. Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..
[11] A. Stuart,et al. Besov priors for Bayesian inverse problems , 2011, 1105.0889.
[12] S. Siltanen,et al. Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .
[13] Bruce J. West,et al. FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .
[14] H. Triebel. Function Spaces and Wavelets on Domains , 2008 .
[15] H. Triebel. Theory Of Function Spaces , 1983 .
[16] Mikko Alava,et al. Branching Processes , 2009, Encyclopedia of Complexity and Systems Science.
[17] D. L. Donoho,et al. Ideal spacial adaptation via wavelet shrinkage , 1994 .
[18] Li Lan,et al. Fractal analysis of mammographic parenchymal patterns in breast cancer risk assessment. , 2007, Academic radiology.
[19] Benoit B. Mandelbrot,et al. Parallel cartoons of fractal models of finance , 2005 .
[20] Russell M. Brown. Global Uniqueness in the Impedance-Imaging Problem for Less Regular Conductivities , 1996 .
[21] Antonin Chambolle,et al. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..
[22] Jack A Tuszynski,et al. Automatic prediction of tumour malignancy in breast cancer with fractal dimension , 2016, Royal Society Open Science.
[23] H. Haario,et al. Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .
[24] Y. Meyer. Wavelets and Operators , 1993 .
[25] D. Abásolo,et al. Use of the Higuchi's fractal dimension for the analysis of MEG recordings from Alzheimer's disease patients. , 2009, Medical Engineering and Physics.
[26] Erkki Somersalo,et al. Linear inverse problems for generalised random variables , 1989 .
[27] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[28] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[29] Levent Sendur,et al. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..
[30] B. Silverman,et al. Wavelet thresholding via a Bayesian approach , 1998 .
[31] Daniela Calvetti,et al. A Gaussian hypermodel to recover blocky objects , 2007 .
[32] M. Yaffe,et al. Characterisation of mammographic parenchymal pattern by fractal dimension. , 1990, Physics in medicine and biology.
[33] A. Lejay,et al. A Threshold Model for Local Volatility: Evidence of Leverage and Mean Reversion Effects on Historical Data , 2017, International Journal of Theoretical and Applied Finance.
[34] Daniela Calvetti,et al. Hypermodels in the Bayesian imaging framework , 2008 .
[35] P. Pigato. Extreme at-the-money skew in a local volatility model , 2019, Finance and Stochastics.
[36] R. Mauldin,et al. Random recursive constructions: asymptotic geometric and topological properties , 1986 .
[37] A. Tempelman,et al. On Hausdorff Dimension of Random Fractals , 2001 .
[38] M. Lassas,et al. Hierarchical models in statistical inverse problems and the Mumford–Shah functional , 2009, 0908.3396.
[39] Tapio Helin,et al. On infinite-dimensional hierarchical probability models in statistical inverse problems , 2009, 0907.5322.
[40] T. Wong,et al. Measurement of macular fractal dimension using a computer-assisted program. , 2014, Investigative ophthalmology & visual science.
[42] J. Hokanson,et al. Diagnostic capabilities of fractal dimension and mandibular cortical width to identify men and women with decreased bone mineral density , 2012, Osteoporosis International.