Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex

The utilization of organized supramolecular assemblies to exploit the synergistic interactions afforded by close proximity, both for enzymatic synthesis and for the degradation of recalcitrant substrates, is an emerging theme in cellular biology. Anaerobic bacteria harness a multiprotein complex, termed the “cellulosome,” for efficient degradation of the plant cell wall. This megadalton catalytic machine organizes an enzymatic consortium on a multifaceted molecular scaffold whose “cohesin” domains interact with corresponding “dockerin” domains of the enzymes. Here we report the structure of the cohesin–dockerin complex from Clostridium thermocellum at 2.2-Å resolution. The data show that the β-sheet cohesin domain interacts predominantly with one of the helices of the dockerin. Whereas the structure of the cohesin remains essentially unchanged, the loop–helix–helix–loop–helix motif of the dockerin undergoes conformational change and ordering compared with its solution structure, although the classical 12-residue EF-hand coordination to two calcium ions is maintained. Significantly, internal sequence duplication within the dockerin is manifested in near-perfect internal twofold symmetry, suggesting that both “halves” of the dockerin may interact with cohesins in a similar manner, thus providing a higher level of structure to the cellulosome and possibly explaining the presence of “polycellulosomes.” The structure provides an explanation for the lack of cross-species recognition between cohesin–dockerin pairs and thus provides a blueprint for the rational design, construction, and exploitation of these catalytic assemblies.

[1]  J. Hall,et al.  Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. , 1995, The Biochemical journal.

[2]  E. Bayer,et al.  Species‐specificity of the cohesin‐dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: Prediction of specificity determinants of the dockerin domain , 1997, Proteins.

[3]  E. Bayer,et al.  A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. , 1997, Structure.

[4]  E. Bayer,et al.  Cohesin‐dockerin recognition in cellulosome assembly: Experiment versus hypothesis , 2000, Proteins.

[5]  E. Bayer,et al.  Cellulosomes-structure and ultrastructure. , 1998, Journal of structural biology.

[6]  Didier Nurizzo,et al.  Promiscuity in ligand-binding: The three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello- and mannohexaose , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[7]  C Cambillau,et al.  Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. , 2000, Journal of molecular biology.

[8]  P. Béguin,et al.  The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. , 1996, Critical reviews in biochemistry and molecular biology.

[9]  E. Bayer,et al.  Degradation of Cellulose Substrates by Cellulosome Chimeras , 2002, The Journal of Biological Chemistry.

[10]  Pedro M Alzari,et al.  Mapping by site-directed mutagenesis of the region responsible for cohesin-dockerin interaction on the surface of the seventh cohesin domain of Clostridium thermocellum CipA. , 2002, Biochemistry.

[11]  E. Bayer,et al.  The cellulosome--a treasure-trove for biotechnology. , 1994, Trends in biotechnology.

[12]  Raphael Lamed,et al.  Cohesin-Dockerin Interaction in Cellulosome Assembly , 2001, The Journal of Biological Chemistry.

[13]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[14]  Pedro M Alzari,et al.  Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. , 2002, Biochemistry.

[15]  J. Aubert,et al.  Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA , 1994, Journal of bacteriology.

[16]  W. M. Westler,et al.  Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. , 2000, Archives of biochemistry and biophysics.

[17]  J. Wu,et al.  Interactions of the CelS binding ligand with various receptor domains of the Clostridium thermocellum cellulosomal scaffolding protein, CipA , 1996, Journal of bacteriology.

[18]  A. Demain,et al.  Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL‐protein reveals an unusual degree of internal homology , 1993, Molecular microbiology.

[19]  E. Bayer,et al.  The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. , 1999, Trends in microbiology.

[20]  P. Alzari,et al.  The crystal structure of a type I cohesin domain at 1.7 A resolution. , 1997, Journal of molecular biology.

[21]  W. M. Westler,et al.  Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. , 2001, Journal of molecular biology.

[22]  G J Davies,et al.  The X6 "thermostabilizing" domains of xylanases are carbohydrate-binding modules: structure and biochemistry of the Clostridium thermocellum X6b domain. , 2000, Biochemistry.

[23]  J. Aubert,et al.  The biological degradation of cellulose. , 1994, FEMS microbiology reviews.

[24]  E. Bayer,et al.  Cellulose, cellulases and cellulosomes. , 1998, Current opinion in structural biology.

[25]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[26]  E. Bayer,et al.  Expression, purification and subunit‐binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome , 1995, FEBS letters.

[27]  R. Kretsinger,et al.  Carp muscle calcium-binding protein. II. Structure determination and general description. , 1973, The Journal of biological chemistry.

[28]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.