Induced Chirality in a Metal–Organic Framework by Postsynthetic Modification for Highly Selective Asymmetric Aldol Reactions

A straightforward synthetic route to chiral metal–organic frameworks is proposed that relies on an acid–base interaction between an acid linker and a chiral primary amino acid derived diamine organocatalyst. High ee values for the aldol condensation of linear ketones and aromatic aldehydes are reported with this heterogeneous catalyst. Three consecutive catalyst reuse experiments demonstrated that the majority of the activity was preserved, as was the enantioselectivity.

[1]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[2]  Freek Kapteijn,et al.  Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks , 2013 .

[3]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[4]  F. Kapteijn,et al.  Towards acid MOFs – catalytic performance of sulfonic acid functionalized architectures , 2013 .

[5]  Tetsu Tsubogo,et al.  Asymmetrische Kohlenstoff‐Kohlenstoff‐Kupplungen unter kontinuierlichen Durchflussbedingungen mit chiralen Heterogenkatalysatoren , 2013 .

[6]  Shū Kobayashi,et al.  Asymmetric carbon-carbon bond formation under continuous-flow conditions with chiral heterogeneous catalysts. , 2013, Angewandte Chemie.

[7]  Dongbo Zhao,et al.  Recent Advances in Asymmetric Catalysis in Flow , 2013 .

[8]  M. Heravi,et al.  Recent applications of organocatalysts in asymmetric aldol reactions , 2012 .

[9]  I. Mándity,et al.  Asymmetric aldol reaction in a continuous-flow reactor catalyzed by a highly reusable heterogeneous peptide , 2012 .

[10]  Freek Kapteijn,et al.  Metal–organic frameworks as scaffolds for the encapsulation of active species: state of the art and future perspectives , 2012 .

[11]  A. Henseler,et al.  A solid-supported organocatalyst for continuous-flow enantioselective aldol reactions. , 2012, ChemSusChem.

[12]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[13]  Li Peng,et al.  Solid Acids as Heterogeneous Support for Primary Amino Acid‐Derived Diamines in Direct Asymmetric Aldol Reactions , 2011 .

[14]  F. Glorius,et al.  A family of chiral metal-organic frameworks. , 2011, Chemistry.

[15]  C. Serre,et al.  Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) , 2011 .

[16]  B. Sels,et al.  Direct Asymmetric syn‐Aldol Reactions of Linear Aliphatic Ketones with Primary Amino Acid‐Derived Diamines , 2010 .

[17]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[18]  Pengyan Wu,et al.  Homochiral metal-organic frameworks for heterogeneous asymmetric catalysis. , 2010, Journal of the American Chemical Society.

[19]  N. Shibata,et al.  Enantioselective Aldol Reaction using Recyclable Montmorillonite‐Entrapped N‐(2‐Thiophenesulfonyl)prolinamide , 2010 .

[20]  Kimoon Kim,et al.  Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials. , 2009, Journal of the American Chemical Society.

[21]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[22]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[23]  Chuande Wu,et al.  From one to three: a serine derivate manipulated homochiral metal-organic framework. , 2009, Chemical communications.

[24]  S. Luo,et al.  Asymmetric bifunctional primary aminocatalysis on magnetic nanoparticles. , 2008, Chemical communications.

[25]  Long Zhang,et al.  Noncovalently supported heterogeneous chiral amine catalysts for asymmetric direct aldol and Michael addition reactions. , 2008, Chemistry.

[26]  Z. An,et al.  An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support , 2006 .

[27]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[28]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[29]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[30]  Jeffrey S. Moore,et al.  Zeolite-like behavior of a coordination network , 1995 .