Mapping Coastal Dune Landscape through Spectral Rao's Q Temporal Diversity

[1]  Dirk S. Schmeller,et al.  Priorities for biodiversity monitoring in Europe: A review of supranational policies and a novel scheme for integrative prioritization , 2013 .

[2]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[3]  R. M. Hoffer,et al.  Biomass estimation on grazed and ungrazed rangelands using spectral indices , 1998 .

[4]  Flavio Marzialetti,et al.  Capturing Coastal Dune Natural Vegetation Types Using a Phenology-Based Mapping Approach: The Potential of Sentinel-2 , 2019, Remote. Sens..

[5]  P. Hesp Ecological processes and plant adaptations on coastal dunes , 1991 .

[6]  Duccio Rocchini,et al.  Measuring Rao's Q diversity index from remote sensing: An open source solution , 2017 .

[7]  Barry R. Middleton,et al.  MODIS Derived Vegetation Index for Drought Detection on the San Carlos Apache Reservation , 2016 .

[8]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[9]  Markus Neteler,et al.  Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges , 2010, Ecol. Informatics.

[10]  Duccio Rocchini,et al.  Time-lapsing biodiversity: An open source method for measuring diversity changes by remote sensing , 2019, Remote Sensing of Environment.

[11]  Matthias Drusch,et al.  Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services , 2012 .

[12]  M. Carranza,et al.  Are there habitats that contribute best to plant species diversity in coastal dunes? , 2009, Biodiversity and Conservation.

[13]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .

[14]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[15]  Martin Schaefer,et al.  Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition , 2015, Ecology letters.

[16]  Laurence Hubert-Moy,et al.  Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities , 2019, Remote Sensing of Environment.

[17]  P. Sutton,et al.  The coasts of our world: Ecological, economic and social importance , 2007 .

[18]  M. Carranza,et al.  Ecosystem classification for EU habitat distribution assessment in sandy coastal environments: An application in central Italy , 2008, Environmental monitoring and assessment.

[19]  G. W. Milligan,et al.  A study of standardization of variables in cluster analysis , 1988 .

[20]  Pietro Minissale,et al.  The role of natural vegetation in the analysis of the spatio-temporal changes of coastal dune system: a case study in Sicily , 2015, Journal of Coastal Conservation.

[21]  D. Lytle,et al.  Seasonality and predictability shape temporal species diversity. , 2017, Ecology.

[22]  O. Mutanga,et al.  Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review , 2010, Wetlands Ecology and Management.

[23]  Martin Kappas,et al.  Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery , 2017, Sensors.

[24]  Carlo Ricotta,et al.  Measuring Scale-Dependent Landscape Structure with Rao's Quadratic Diversity , 2013, ISPRS Int. J. Geo Inf..

[25]  Siamak Khorram,et al.  Regional Scale Land Cover Characterization Using MODIS-NDVI 250 m Multi-Temporal Imagery: A Phenology-Based Approach , 2006 .

[26]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[27]  Joanne C. White,et al.  Optical remotely sensed time series data for land cover classification: A review , 2016 .

[28]  Adriano Mancini,et al.  Mapping Mediterranean Forest Plant Associations and Habitats with Functional Principal Component Analysis Using Landsat 8 NDVI Time Series , 2020, Remote. Sens..

[29]  René Landry,et al.  Assessing horizontal positional accuracy of Google Earth imagery in the city of Montreal, Canada , 2017 .

[30]  Nicholas C. Coops,et al.  Virtual constellations for global terrestrial monitoring , 2015 .

[31]  P. Levelt,et al.  ESA's sentinel missions in support of Earth system science , 2012 .

[32]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[33]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[34]  Steven J. Phillips,et al.  The art of modelling range‐shifting species , 2010 .

[35]  Jm Brownett,et al.  The development and application of remote sensing to monitor sand dune habitats , 2017, Journal of Coastal Conservation.

[36]  J. Gastwirth The Estimation of the Lorenz Curve and Gini Index , 1972 .

[37]  P. Prajesh,et al.  Monitoring and mapping of seasonal vegetation trend in Tamil Nadu using NDVI and NDWI imagery , 2019, Journal of Applied and Natural Science.

[38]  Fionn Murtagh,et al.  Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? , 2011, Journal of Classification.

[39]  M. Zoffoli,et al.  Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region , 2008, Landscape Ecology.

[40]  Tim R. McVicar,et al.  Climate‐related trends in Australian vegetation cover as inferred from satellite observations, 1981–2006 , 2009 .

[41]  R. Escadafal,et al.  Remote sensing of soil color: Principles and applications , 1993 .

[42]  L. Jones,et al.  Not just a sandy beach. The multi-service value of Mediterranean coastal dunes. , 2019, The Science of the total environment.

[43]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[44]  Wenjiang Huang,et al.  Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China , 2016 .

[45]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[46]  Maribeth Price,et al.  Comparing Classification Results of Multi-Seasonal TM against AVIRIS Imagery – Seasonality more Important than Number of Bands , 2012 .

[47]  Owen L. Petchey,et al.  Biodiversity and Resilience of Ecosystem Functions. , 2015, Trends in ecology & evolution.

[48]  Calyampudi R. Rao Diversity and dissimilarity coefficients: A unified approach☆ , 1982 .

[49]  Kimberly S. Sheldon,et al.  Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium. , 2017, Integrative and comparative biology.

[50]  Baihua Fu,et al.  Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater , 2015 .

[51]  Abineh Tilahun,et al.  Accuracy Assessment of Land Use Land Cover Classification using Google Earth , 2015 .

[52]  Yongxue Liu,et al.  Classification mapping of salt marsh vegetation by flexible monthly NDVI time-series using Landsat imagery , 2018, Estuarine, Coastal and Shelf Science.

[53]  A. Acosta,et al.  Mediterranean coastal pine forest stands: Understorey distinctiveness or not? , 2017 .

[54]  A. Mclachlan,et al.  Sandy shore ecosystems and the threats facing them: some predictions for the year 2025 , 2002, Environmental Conservation.

[55]  Claudio Parente,et al.  Coastline extraction using high resolution WorldView-2 satellite imagery , 2014 .

[56]  Mahesh Pal,et al.  Random forest classifier for remote sensing classification , 2005 .

[57]  A. Acosta,et al.  Mediterranean dunes on the go: Evidence from a short term study on coastal herbaceous vegetation , 2016 .

[58]  Dirk Pflugmacher,et al.  Forest Stand Species Mapping Using the Sentinel-2 Time Series , 2019, Remote. Sens..

[59]  T. Caliński,et al.  A dendrite method for cluster analysis , 1974 .

[60]  J. Ndambuki,et al.  Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS , 2017 .

[61]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  A. Stanisci,et al.  EU habitats monitoring along the coastal dunes of the LTER sites of Abruzzo and Molise (Italy) , 2014 .

[63]  Marc Zebisch,et al.  Estimating tree species diversity from space in an alpine conifer forest: The Rao's Q diversity index meets the spectral variation hypothesis , 2019, Ecol. Informatics.

[64]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[65]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[66]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[67]  Sarah C. Goslee Correlation analysis of dissimilarity matrices , 2009, Plant Ecology.

[68]  D. Schoeman,et al.  Threats to sandy beach ecosystems: A review , 2009 .

[69]  René Roland Colditz,et al.  An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms , 2015, Remote. Sens..

[70]  C. Ricotta,et al.  Quantitative comparison of the diversity of landscapes with actual vs. potential natural vegetation , 2000 .

[71]  M. Malavasi,et al.  How does dune morphology shape coastal EC habitats occurrence? A remote sensing approach using airborne LiDAR on the Mediterranean coast , 2016 .

[72]  Jeffrey A. Cardille,et al.  Strategies for Incorporating High-Resolution Google Earth Databases to Guide and Validate Classifications: Understanding Deforestation in Borneo , 2011, Remote. Sens..

[73]  K. McGarigal,et al.  Fine-scale remotely-sensed cover mapping of coastal dune and salt marsh ecosystems at Cape Cod National Seashore using Random Forests , 2012 .

[74]  Combining land cover mapping of coastal dunes with vegetation analysis , 2005 .

[75]  Sabri Boughorbel,et al.  Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric , 2017, PloS one.

[76]  R. Hill,et al.  Mapping tree species in temperate deciduous woodland using time‐series multi‐spectral data , 2010 .

[77]  Tara G. Martin,et al.  Climate change modifies risk of global biodiversity loss due to land-cover change , 2015 .

[78]  Alain F. Zuur,et al.  A protocol for data exploration to avoid common statistical problems , 2010 .

[79]  M. Malavasi,et al.  What has happened to coastal dunes in the last half century? A multitemporal coastal landscape analysis in Central Italy , 2013 .

[80]  Marco Malavasi,et al.  Boundary-based analysis for the assessment of coastal dune landscape integrity over time , 2013 .

[81]  Carlo Ricotta,et al.  CWM and Rao’s quadratic diversity: a unified framework for functional ecology , 2011, Oecologia.

[82]  C. Ricotta,et al.  On some properties of the Bray-Curtis dissimilarity and their ecological meaning , 2017 .

[83]  Michael Förster,et al.  UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data , 2019, Remote Sensing of Environment.

[84]  George P. Petropoulos,et al.  Co-Orbital Sentinel 1 and 2 for LULC Mapping with Emphasis on Wetlands in a Mediterranean Setting Based on Machine Learning , 2017, Remote. Sens..

[85]  Maria Laura Carranza,et al.  Quantifying ecological mosaic connectivity and hemeroby with a new topoecological index , 2003 .

[86]  Cornelius Senf,et al.  Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery , 2015 .