A Generic Global Optimization Algorithm for the Chemical and Phase Equilibrium Problem

This paper addresses the problem of finding the number, K, of phases present at equilibrium and their composition, in a chemical mixture of ns substances. This corresponds to the global minimum of the Gibbs free energy of the system, subject to constraints representing mb independent conserved quantities, where mb=ns when no reaction is possible and mb ≤ ne +1 when reaction is possible and ne is the number of elements present. After surveying previous work in the field and pointing out the main issues, we extend the necessary and sufficient condition for global optimality based on the ‘reaction tangent-plane criterion’, to the case involving different thermodynamical models (multiple phase classes). We then present an algorithmic approach that reduces this global optimization problem (involving a search space of mb(ns-1) dimensions) to a finite sequence of local optimization steps inK(ns-1) -space, K ≤ mb, and global optimization steps in (ns-1)-space. The global step uses the tangent-plane criterion to determine whether the current solution is optimal, and, if it is not, it finds an improved feasible solution either with the same number of phases or with one added phase. The global step also determines what class of phase (e.g. liquid or vapour) is to be added, if any phase is to be added. Given a local minimization procedure returning a Kuhn–Tucker point and a global optimization procedure (for a lower-dimensional search space) returning a global minimum, the algorithm is proved to converge to a global minimum in a finite number of the above local and global steps. The theory is supported by encouraging computational results.

[1]  K. I. M. McKinnon,et al.  A parallel algorithm for the global minimizationof Gibbs free energy , 1999, Ann. Oper. Res..

[2]  C. Floudas,et al.  Primal-relaxed dual global optimization approach , 1993 .

[3]  C. Floudas,et al.  Global optimization for the phase and chemical equilibrium problem: Application to the NRTL equation , 1995 .

[4]  John A. Trangenstein,et al.  Customized minimization techniques for phase equilibrium computations in reservoir simulation , 1987 .

[5]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[6]  Christodoulos A. Floudas,et al.  Global optimization for the phase stability problem , 1995 .

[7]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[8]  Amy Cha-Tien Sun,et al.  Homotopy-continuation algorithm for global optimization , 1992 .

[9]  William R. Smith,et al.  General optimality criteria for multiphase multireaction chemical equilibrium , 1993 .

[10]  I. Grossmann,et al.  Computation of phase and chemical equilibria , 1981 .

[11]  H. Renon,et al.  The isothermal flash problem: New methods for phase split calculations , 1987 .

[12]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[13]  Kamy Sepehrnoori,et al.  Development of a Thermodynamically Consistent, Fully Implicit, Equation-of-State, Compositional Steamflood Simulator , 1991 .

[14]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[15]  Laurence A. Wolsey A resource decomposition algorithm for general mathematical programs , 1981 .

[16]  M. Mongeau,et al.  Global Optimization for the Chemical and Phase Equilibrium Problem using Interval Analysis , 1996 .

[17]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[18]  P. McMullen Convex Sets and Their Applications , 1982 .

[19]  Long X. Nghiem,et al.  Computation of multiphase equilibrium phenomena with an equation of state , 1984 .

[20]  Wen-De Xiao,et al.  An algorithm for simultaneous chemical and phase equilibrium calculation , 1989 .

[21]  Warren D. Seider,et al.  Computation of phase and chemical equilibrium: Part III. Electrolytic solutions , 1979 .

[22]  M. Michelsen The isothermal flash problem. Part II. Phase-split calculation , 1982 .

[23]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[24]  A. S. Cullick,et al.  New strategy for phase equilibrium and critical point calculations by thermodynamic energy analysis. Part I. Stability analysis and flash , 1991 .

[25]  Khalid Aziz,et al.  An accelerated successive substitution algorithm , 1983 .

[26]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[27]  Lloyd S. Shapley,et al.  Mass Action Laws and the Gibbs Free Energy Function , 1965 .

[28]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[29]  Y. Jiang,et al.  Global Optimality Conditions and their Geometric Interpretation for the Chemical and Phase Equilibrium Problem , 1995, SIAM J. Optim..

[30]  Christodoulos A. Floudas,et al.  Decomposition based and branch and bound global optimization approaches for the phase equilibrium problem , 1994, J. Glob. Optim..

[31]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[32]  C. Floudas,et al.  GLOPEQ: A new computational tool for the phase and chemical equilibrium problem , 1997 .

[33]  Richard J. Clasen The Solution of the Chemical Equilibrium Programming Problem with Generalized Benders Decomposition , 1984, Oper. Res..