Single-Cell RNA Sequencing Maps Endothelial Metabolic Plasticity in Pathological Angiogenesis.

[1]  Huanming Yang,et al.  An Integrated Gene Expression Landscape Profiling Approach to Identify Lung Tumor Endothelial Cell Heterogeneity and Angiogenic Candidates. , 2020, Cancer cell.

[2]  P. Carmeliet,et al.  Role and therapeutic potential of dietary ketone bodies in lymph vessel growth , 2019, Nature Metabolism.

[3]  Anne Richelle,et al.  Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0 , 2019, Nature Protocols.

[4]  P. Carmeliet,et al.  Metabolic Pathways Fueling the Endothelial Cell Drive. , 2019, Annual review of physiology.

[5]  S. Weinberg,et al.  Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis , 2018, Nature Metabolism.

[6]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[7]  Shawez Khan,et al.  EndoDB: a database of endothelial cell transcriptomics data , 2018, Nucleic Acids Res..

[8]  J. Phang,et al.  Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses , 2017, Antioxidants & redox signaling.

[9]  S. Chirumbolo,et al.  The role of matrix Gla protein (MGP) in vascular calcification. , 2020, Current medicinal chemistry.

[10]  P. Carmeliet,et al.  Quiescent Endothelial Cells Upregulate Fatty Acid β-Oxidation for Vasculoprotection via Redox Homeostasis. , 2018, Cell metabolism.

[11]  P. Carmeliet,et al.  Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. , 2018, Cell metabolism.

[12]  L. Rice,et al.  Single Cell RNA Sequencing Identifies HSPG2 and APLNR as Markers of Endothelial Cell Injury in Systemic Sclerosis Skin , 2018, Front. Immunol..

[13]  P. Carmeliet,et al.  Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. , 2018, Cell metabolism.

[14]  Ines Soro-Arnaiz,et al.  The Warburg Effect in Endothelial Cells and its Potential as an Anti-angiogenic Target in Cancer , 2018, Front. Cell Dev. Biol..

[15]  Alexander Muir,et al.  Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies , 2018, Disease Models & Mechanisms.

[16]  Julia J. Mack,et al.  Endothelial Regeneration of Large Vessels Is a Biphasic Process Driven by Local Cells with Distinct Proliferative Capacities. , 2018, Cell stem cell.

[17]  Ó. Rolfsson,et al.  Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification , 2018, Scientific Reports.

[18]  M. Ni,et al.  Single-Cell Transcriptome Analyses Reveal Endothelial Cell Heterogeneity in Tumors and Changes following Antiangiogenic Treatment. , 2018, Cancer research.

[19]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[20]  A. Zeiher,et al.  Clonal Expansion of Endothelial Cells Contributes to Ischemia-Induced Neovascularization , 2018, Circulation research.

[21]  Y. Hayashizaki,et al.  CD157 Marks Tissue-Resident Endothelial Stem Cells with Homeostatic and Regenerative Properties. , 2018, Cell stem cell.

[22]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[23]  R. Kibbey,et al.  Metabolic Analysis of Lymphatic Endothelial Cells. , 2018, Methods in molecular biology.

[24]  P. Carmeliet,et al.  Endothelial Cell Metabolism. , 2018, Physiological reviews.

[25]  R. Mecham,et al.  Measurement of elastin, collagen, and total protein levels in tissues. , 2018, Methods in cell biology.

[26]  A. Kimmelman,et al.  Metabolic Interactions in the Tumor Microenvironment. , 2017, Trends in cell biology.

[27]  A. van Oudenaarden,et al.  Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations , 2017, Nature Methods.

[28]  Juan M. Vaquerizas,et al.  Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis , 2017, Nature Communications.

[29]  K. Red-Horse,et al.  Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects , 2017, Science Translational Medicine.

[30]  N. Yuldasheva,et al.  Role of glutamine and interlinked asparagine metabolism in vessel formation , 2017, The EMBO journal.

[31]  N. Sawada,et al.  Metabolic Regulation of Angiogenesis in Diabetes and Aging. , 2017, Physiology.

[32]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[33]  K. Ley,et al.  Differential DARC/ACKR1 expression distinguishes venular from non-venular endothelial cells in murine tissues , 2017, BMC Biology.

[34]  Ye Guang Chen,et al.  Metformin inhibits ALK1-mediated angiogenesis via activation of AMPK , 2017, OncoTarget.

[35]  K. Khosrotehrani,et al.  Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process , 2017, Circulation.

[36]  M. Sardana,et al.  Inactive Matrix Gla-Protein and Arterial Stiffness in Type 2 Diabetes Mellitus , 2017, American journal of hypertension.

[37]  Santosh S. Vempala,et al.  CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models , 2017, Bioinform..

[38]  G. Angelini,et al.  PI16 is a shear stress and inflammation-regulated inhibitor of MMP2 , 2016, Scientific Reports.

[39]  P. Carmeliet,et al.  Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. , 2016, Cancer cell.

[40]  L. Klein-Hitpass,et al.  Matricellular protein SPARCL1 regulates tumor microenvironment-dependent endothelial cell heterogeneity in colorectal carcinoma. , 2016, The Journal of clinical investigation.

[41]  S. Wienert,et al.  Clonal Proliferation and Stochastic Pruning Orchestrate Lymph Node Vasculature Remodeling. , 2016, Immunity.

[42]  Y. Saeys,et al.  SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development , 2016, bioRxiv.

[43]  P. Fernandes,et al.  Cholesterol Biosynthesis: A Mechanistic Overview. , 2016, Biochemistry.

[44]  Ronan M. T. Fleming,et al.  MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models , 2016, Front. Physiol..

[45]  Xiaodong Sun,et al.  Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review , 2016, Drug design, development and therapy.

[46]  Neil Swainston,et al.  Recon 2.2: from reconstruction to model of human metabolism , 2016, Metabolomics.

[47]  Roberto Pagliarini,et al.  In Silico Modeling of Liver Metabolism in a Human Disease Reveals a Key Enzyme for Histidine and Histamine Homeostasis , 2016, Cell reports.

[48]  Daniel M. Corey,et al.  Dynamic Patterns of Clonal Evolution in Tumor Vasculature Underlie Alterations in Lymphocyte-Endothelial Recognition to Foster Tumor Immune Escape. , 2016, Cancer research.

[49]  M. Epstein Matrix Gla-Protein (MGP) Not Only Inhibits Calcification in Large Arteries But Also May Be Renoprotective: Connecting the Dots , 2016, EBioMedicine.

[50]  K. Eales,et al.  Hypoxia and metabolic adaptation of cancer cells , 2016, Oncogenesis.

[51]  R. Dana,et al.  Sufficient Evidence for Lymphatics in the Developing and Adult Human Choroid? , 2015, Investigative ophthalmology & visual science.

[52]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[53]  Jae Yong Ryu,et al.  Reconstruction of genome-scale human metabolic models using omics data. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[54]  Florian Jarre,et al.  CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions , 2015, Bioinform..

[55]  Edward J. O'Brien,et al.  Using Genome-scale Models to Predict Biological Capabilities , 2015, Cell.

[56]  P. Carmeliet,et al.  Fatty acid carbon is essential for dNTP synthesis in endothelial cells , 2015, Nature.

[57]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[58]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[59]  M. Madigan,et al.  Evidence for lymphatics in the developing and adult human choroid. , 2015, Investigative Ophthalmology and Visual Science.

[60]  Eytan Ruppin,et al.  Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability* , 2015, Molecular & Cellular Proteomics.

[61]  Lars Juhl Jensen,et al.  Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes , 2014, Nucleic Acids Res..

[62]  R. Jain,et al.  Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. , 2014, Cancer cell.

[63]  Min Kyung Kim,et al.  Methods for integration of transcriptomic data in genome-scale metabolic models , 2014, Computational and structural biotechnology journal.

[64]  D. Ribatti,et al.  Extracellular Matrix Modulates Angiogenesis in Physiological and Pathological Conditions , 2014, BioMed research international.

[65]  P. Carmeliet,et al.  Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. , 2014, Cell metabolism.

[66]  Traver Hart,et al.  Finding the active genes in deep RNA-seq gene expression studies , 2013, BMC Genomics.

[67]  J. Rakic,et al.  Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice , 2013, Nature Protocols.

[68]  M. Corada,et al.  Sox17 is indispensable for acquisition and maintenance of arterial identity , 2013, Nature Communications.

[69]  K. Nishida,et al.  Identification of vascular endothelial side population cells in the choroidal vessels and their potential role in age-related macular degeneration. , 2013, Investigative ophthalmology & visual science.

[70]  Sonja Loges,et al.  Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. , 2013, The Journal of clinical investigation.

[71]  P. Carmeliet,et al.  Role of PFKFB3-Driven Glycolysis in Vessel Sprouting , 2013, Cell.

[72]  Weijun Luo,et al.  Pathview: an R/Bioconductor package for pathway-based data integration and visualization , 2013, Bioinform..

[73]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[74]  Claudio R. Santos,et al.  Lipid metabolism in cancer , 2012, The FEBS journal.

[75]  J. Ambati,et al.  Mechanisms of Age-Related Macular Degeneration , 2012, Neuron.

[76]  Natalie I. Tasman,et al.  A Cross-platform Toolkit for Mass Spectrometry and Proteomics , 2012, Nature Biotechnology.

[77]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[78]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[79]  H. Kidoya,et al.  Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels , 2012, The EMBO journal.

[80]  Jessica E Wagenseil,et al.  Elastin in Large Artery Stiffness and Hypertension , 2012, Journal of Cardiovascular Translational Research.

[81]  P. Vanhoutte,et al.  Endothelium‐mediated control of vascular tone: COX‐1 and COX‐2 products , 2011, British journal of pharmacology.

[82]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[83]  G. Semenza Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. , 2011, Biochimica et biophysica acta.

[84]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[85]  Roded Sharan,et al.  Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative Adaptation in Causing the Warburg Effect , 2011, PLoS Comput. Biol..

[86]  A. Fukamizu,et al.  Identification and functional analysis of endothelial tip cell–enriched genes , 2022 .

[87]  Joshua S. Kaminker,et al.  Microarray analysis of retinal endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. , 2010, Blood.

[88]  I. Weissman,et al.  Coronary arteries form by developmental reprogramming of venous cells , 2010, Nature.

[89]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[90]  Lu Chen,et al.  Ocular lymphatics: state-of-the-art review. , 2009, Lymphology.

[91]  H. Rakugi,et al.  The CXCL12 (SDF-1)/CXCR4 axis is essential for the development of renal vasculature. , 2009, Journal of the American Society of Nephrology : JASN.

[92]  J. Plutzky,et al.  PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. , 2008, The Journal of clinical investigation.

[93]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[94]  Bernhard O. Palsson,et al.  Context-Specific Metabolic Networks Are Consistent with Experiments , 2008, PLoS Comput. Biol..

[95]  R. Schmidt,et al.  Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. , 2008, The American journal of pathology.

[96]  P. D’Amore,et al.  Arterial versus venous endothelial cells , 2008, Cell and Tissue Research.

[97]  Ivana K. Kim,et al.  The FASEB Journal • Research Communication Endogenous endostatin inhibits choroidal neovascularization , 2022 .

[98]  R. Adams,et al.  Regulation of vascular morphogenesis by Notch signaling. , 2007, Genes & development.

[99]  G. Atkins,et al.  Role of Krüppel-like transcription factors in endothelial biology. , 2007, Circulation Research.

[100]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[101]  Rainer Breitling,et al.  RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis , 2006, Bioinform..

[102]  F. Bosman,et al.  Immunohistochemical Expression of Endothelial Markers CD31, CD34, von Willebrand Factor, and Fli-1 in Normal Human Tissues , 2006, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[103]  L. Horrocks,et al.  Phospholipid composition of cultured human endothelial cells , 1992, Lipids.

[104]  Fu-Jung Lin,et al.  Suppression of Notch signalling by the COUP-TFII transcription factor regulates vein identity , 2005, Nature.

[105]  Peer Bork,et al.  Comparison of computational methods for the identification of cell cycle-regulated genes , 2005, Bioinform..

[106]  R. Mahadevan,et al.  The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. , 2003, Metabolic engineering.

[107]  J. Redondo,et al.  Cyclooxygenase-2: a therapeutic target in angiogenesis. , 2003, Trends in molecular medicine.

[108]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[109]  Larry V. McIntire,et al.  DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[110]  E. Sage,et al.  SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. , 2001, The Journal of clinical investigation.

[111]  L. Zanetta,et al.  Expression of von Willebrand factor, an endothelial cell marker, is up‐regulated by angiogenesis factors: A potential method for objective assessment of tumor angiogenesis , 2000, International journal of cancer.

[112]  A Kijlstra,et al.  Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. , 1999, The American journal of pathology.

[113]  L. Creemers,et al.  Microassay for the assessment of low levels of hydroxyproline. , 1997, BioTechniques.

[114]  D. Lefer,et al.  Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. , 1995, The American journal of pathology.

[115]  N. Weidner,et al.  Correlation of intratumoral endothelial cell proliferation with microvessel density (tumor angiogenesis) and tumor cell proliferation in breast carcinoma. , 1994, The American journal of pathology.

[116]  J. Pearson,et al.  Substrate-dependent regulation of intracellular amino acid concentrations in cultured bovine aortic endothelial cells. , 1990, Biochemical and Biophysical Research Communications - BBRC.

[117]  H. Dvorak Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. , 1986, The New England journal of medicine.

[118]  C. Kaplinsky,et al.  Modification of ribonucleotide and deoxyribonucleotide metabolism in interferon-treated human B-lymphoblastoid cells. , 1986, Journal of Interferon Research.

[119]  J. Folkman,et al.  ANGIOGENESIS: INITIATION AND CONTROL * , 1982, Annals of the New York Academy of Sciences.

[120]  A. Nordøy,et al.  Lipid composition of cultured human endothelial cells. , 1980, Thrombosis Research.

[121]  M. Levandowsky,et al.  Distance between Sets , 1971, Nature.

[122]  J. Eastoe,et al.  The amino acid composition of mammalian collagen and gelatin. , 1955, The Biochemical journal.